
- •Содержание
- •1.Матрицы. Операции над матрицами
- •1.1. Пример 1.1
- •1.2. Пример 1.2
- •1.3. Пример 1.3
- •2. Определители
- •2.1. Пример 2.1
- •2.2. Пример 2.2
- •2.3. Пример 2.3
- •2.4. Пример 2.4
- •3. Ранг матрицы
- •3.1. Пример 3.1
- •3.2. Пример 3.2
- •4. Обратная матрица
- •4.1. Пример 4.1
- •4.2. Пример 4.2
- •5. Системы линейных уравнений. Критерий совместности Кронекера-Капелли
- •5.1. Пример 5.1
- •6. Матричный метод
- •6.1. Пример 6.1
- •7. Формулы Крамера
- •7.1. Пример 7.1
- •9. Системы линейных уравнений общего вида
- •9.1. Методы исследования
- •9.2. Собственные числа и собственные векторы матрицы
- •9.1. Пример 9.1
- •9.2. Пример 9.2
- •9.3. Пример 9.3
- •9.4. Пример 9.4
- •10. Использование систем линейных уравнений
- •10.1. Пример 10.1
- •10.2. Пример 10.2
- •10.3. Пример 10.3
- •10.4. Пример 10.4
- •10.5. Пример 10.5
- •10.6 Пример 10.6
- •Литература
- •Приложения
- •Учебно-методическая карта
- •По математике спец. Экономика факультет экономический
- •Курс первый семестр первый 2006/2007 уч. Год
7. Формулы Крамера
Метод Крамера состоит в том, что мы последовательно находим главный определитель системы (5.3), т.е. определитель матрицы А
Δ = det (ai j)
и
n вспомогательных
определителей
Δi (i=),
которые получаются из определителя Δ
заменой i-го столбца столбцом свободных
членов.
Формулы Крамера имеют вид:
(
i
=
).
(7.1)
Из (7.1) следует правило Крамера, которое дает исчерпывающий ответ на вопрос о совместности системы (5.3):
если главный определитель системы отличен от нуля, то система имеет единственное решение, определяемое по формулам:
Если
главный определитель системы Δ и все
вспомогательные определители Δi
= 0 (i=
),
то система имеет бесчисленное множество
решений.
Если главный определитель системы Δ = 0, а хотя бы один вспомогательный определитель отличен от нуля, то система несовместна.
7.1. Пример 7.1
Решить методом Крамера систему уравнений:
x1 + x2 + x3 + x4 = 5,
x1 + 2x2 - x3 + 4x4 = -2,
2x1 - 3x2 - x3 - 5x4 = -2,
3x1 + x2 +2x3 + 11 x4 = 0.
Решение. Главный определитель этой системы
значит,
система имеет единственное решение.
Вычислим вспомогательные определители
Δi
( i =
),
получающиеся из
Для заметок
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
определителя Δ путем замены в нем столбца, состоящего из коэффициентов при xi, столбцом из свободных членов:
Отсюда
,
,
,
решение системы - вектор С=(1, 2, 3, -1)T.
8. Метод Гаусса
Метод Гаусса является наиболее распространенным точным методом исследования и решения систем линейного уравнения (как квадратных, так и не квадратных). Основная идея его состоит в том, что посредством элементарных преобразований система приводится к равносильной системе треугольного или трапециидального (ступенчатого) вида, по которому легко видеть какая система: совместно или несовместна, определенная или неопределенная. При этом, если система совместна, то все решения определяются непосредственно.
К элементарным преобразованиям систем относят следующие:
-
перестановка любых двух уравнений системы;
-
умножение любого уравнения системы на число не равное нулю;
-
вычеркивание уравнения, все коэффициенты которого равны нулю;
-
вычитание из любого уравнения системы любого другого, умноженного на отличное от нуля число;
-
переобозначение неизвестных.
Любое элементарное преобразование приводит к равносильной системе. Применение метода Гаусса состоит в поэтапном исключении неизвестных из уравнений.
Поясним метод Гаусса на конкретных примерах.
8.1. Пример 8.1
Исследовать систему
(8.1)
Преобразуем
систему (8.1), исключив из второго и
третьего уравнений члены содержащие
(добившись, чтобы коэффициенты перед
были равны нулю).
1 шаг.
Умножим обе части первого уравнения на
коэффициент при
,
из второго уравнения, взятый с
противоположным знаком, т.е. на -2:
,
(8.2)
а
обе части второго уравнения умножим на
коэффициент при
из первого уравнения, т.е. 1.
.
(8.3)
Сложим почленно уравнения (8.2) и (8.3):
.
(8.4)
2 шаг.
Аналогичным образом поступим с третьим
уравнением. Умножим обе части первого
уравнения на коэффициент при
третьего уравнения, взятый с противоположным
знаком, т.е. на -4:
,
(8.5)
а
третье уравнение – на коэффициент при
первого уравнения, т.е. на 1:
.
(8.6)
Сложим почленно уравнения (8.5) и (8.6):
.
(8.7)
Подставим в систему (8.1) вместо второго и третьего уравнений (8.4) и (8.7) соответственно. Система (8.1) примет вид:
.
(8.8)
3 шаг.
Затем
преобразуем третье уравнение, исключив
из него член, содержащий
.
Для этого обе части второго уравнения
умножим на коэффициент при
из третьего уравнения, взятый с
противоположным знаком, т.е. на 3, получим
Для заметок
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.
(8.9)
Обе
части третьего уравнения умножим на
коэффициент при
из второго уравнения, т.е. на -3:
.
(8.10)
Сложим почленно уравнения (8.9) и (8.10):
.
(8.11)
Заменим в системе (8.8) третье уравнение равносильным уравнением (8.11):
.
(8.12)
Таким образом, от исходной системы (8.1) мы перешли к равносильной системе (8.12), которая имеет треугольный вид (ступенчатый). Такое преобразование называют прямым ходом метода Гаусса.
4 шаг
(обратный
ход). Из последнего уравнения системы
(8.2) найдем
:
.
Используя
второе уравнение и найденное значение
,
найдем
:
,
,
.
Используя
первое уравнение и найденное значение
и
,
найдем
:
,
.
Таким образом, исходная система имеет единственное решение
.
Замечание. Предложенные преобразования систем можно формализовать. Можно выполнять операции не над системой, а на её аналоге – матрице. Построим расширенную матрицу вида
(8.13)
Выберем
в качестве разрешающей
строки
первую, а в качестве разрешающего
элемента (в
разрешающей строке это любой не нулевой
элемент)
выберем
элемент
(он выделен жирным шрифтом) и с помощью
неё преобразуем вторую и третью строки
так, чтобы в первом столбце под 1 получились
нули. При этом можно использовать
мнемоническое правило
прямоугольников.
Мысленно строится прямоугольник вида
Здесь
точками обозначены произвольные
элементы матрицы (в том числе и элементы,
образованные свободными членами). Здесь
элемент
разрешающий элемент. Тогда на место
элемента
(выделен жирным шрифтом) ставится число
равное
.
(*)
Используя правило прямоугольников, преобразуем вторую и третью строки
.
Затем
выберем в качестве разрешающей строки
вторую, а в качестве разрешающего
элемента элемент
(он выделен жирным шрифтом). Используя
правило прямоугольников, преобразуем
третью строку.
На этом заканчивается прямой ход метода Гаусса. Последняя матрица представляет собою символическую запись системы (8.12)
.
Применяя обратный ход, также как это было сделано выше, получим решение системы
.
Для заметок
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8.2. Пример 8.2
Исследовать систему
(8.14)
Воспользуемся методом Гаусса.
Поделив вторую строку на 2, а третью на 96, получим
.
Из
последнего уравнения видно, что не
существует такого значения
,
при котором оно будет верным равенством,
т.к. левая
часть
уравнения при любом значении
равна 0, а правая всегда равна 1. Таким
образом, можно сделать вывод, что исходная
система несовместно.
8.3. Пример 8.3
Исследовать систему
(8.15)
Воспользуемся методом Гаусса.
Поделим элементы третьей строки на 3. Получим
.
Очевидно, второе, третье и четвертые уравнения совпадают, поэтому два последних уравнения можно исключить из матрицы (системы):
.
Перенесем
члены, содержащие неизвестные
и
в правые части (это свободные неизвестные,
а
и
- базисные неизвестные). Система примет
вид
.
Выразим
и
через свободные неизвестные
и
,
которые могут принимать произвольные
значения. Из второго уравнения
.
Используя
это значение, из первого уравнения
выразим
через
и
.
Таким образом, общее решение исходной системы имеет вид
.
Здесь С1 и С2 произвольные константы.
Напомни,
что
и
называются базисными
неизвестными.
Для заметок
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение, полученное из общего при С1 = С2 =0 называют базисным решением. Если при этом базисные неизвестные неотрицательны, то такое решение называют опорным.