
- •Учебно-методическое пособие для самоподготовки и самостоятельной работы студентов по курсу «техническая термодинамика и теплотехника»
- •Тема 1. Основные термодинамические параметры Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Рекомендуемая литература:
- •Определение основных термодинамических Параметров
- •Тема 2. Основные законы идеальных газов Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Краткие теоретические положения по теме:
- •Тема 3. Основные свойства газовых смесей Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Рекомендуемая литература:
- •Краткие теоретические положения по теме:
- •Тема 4. Реальные газы Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Краткие теоретические положения по теме:
- •Тема 5. Первый закон термодинамики Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Техническая термодинамика и теплотехника: учеб.Пособие для вузов/ л.Т. Бахшиева, б.П. Кондауров, а.А. Захаров, в.С. Салтыкова; под ред. А.А. Захаровой. – м.: «Академия», 2006 – с.48 – 52
- •Мазур л.С. Техническая термодинамика и теплотехника: Учебник. – м.: гэотар-мед, 2003. – с.16-18, 28-30
- •Тема 6. Теплоемкость газов
- •Рекомендуемая литература:
- •Тема 7. Основные газовые процессы Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Рекомендуемая литература:
- •Мазур л.С. Техническая термодинамика и теплотехника: Учебник. – м.: гэотар-мед, 2003. – с.18-28
- •Изотермическое сжатие воздуха
- •Экспериментальная часть
- •Обработка результатов измерений
- •Построение уравнения состояния воздуха
- •Тема 8. Теорема карно. Эксергия. Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Рекомендуемая литература:
- •Техническая термодинамика и теплотехника: учеб.Пособие для вузов/ л.Т. Бахшиева, б.П. Кондауров, а.А. Захаров, в.С. Салтыкова; под ред. А.А. Захаровой. – м.: «Академия», 2006 – с.145 -153
- •Мазур л.С. Техническая термодинамика и теплотехника: Учебник. – м.: гэотар-мед, 2003. – с.41-53, 63-66, 155-160 Краткие теоретические положения по теме:
- •Тема 9. Применение термодинамических таблиц и диаграмм для решения инженерных задач Вопросы для самостоятельного изучения:
- •Основные расчетные соотношения, законы, положения по теме:
- •Задачи для самостоятельного решения:
- •Краткие теоретические положения по теме:
- •Средства измерения температуры
- •Общие сведения о температурных шкалах
- •Термометры стеклянные жидкостные
- •Введение поправок к показаниям термометра.
- •Термоэлектрические измерители температуры (термопары)
- •Средства измерения давления
- •Жидкостные манометры
-
Термометры стеклянные жидкостные
Стеклянные жидкостные термометры получили широкое распространение в практике измерения температуры вследствие достаточно высокой точности и простоты измерений. Для заполнения термометров в зависимости от области их применения используют ртуть, толуол, этиловый спирт и т. д.
Стеклянные жидкостные термометры, применяемые в технике, подразделяются на:
термометры широкого применения, без введения поправок к их показаниям: ртутные (—35...600СС), жидкостные (—185... 300°С);
термометры повышенной точности, к показаниям которых вводятся поправки согласно свидетельству: ртутные (—35... 600°С), ртутные для точных измерений (0...500°С), жидкостные (—80...100°С).
В основном изготовляют термометры двух типов: палочные и с вложенной шкалой. Термометры с вложенной шкалой более инерционны, но более удобны для наблюдений.
В зависимости от метода градуировки стеклянные термометры должны быть погружены в измеряемую среду либо до отсчитываемого деления, либо до определенной отметки.
В теплотехнических исследованиях используют, как правило, лабораторные термометры ТР с вложенной шкалой (табл.1); предназначенные для точных измерений температуры в диапазоне от 0 до 500°С.
Таблица 1
-
Тип термометра
Количество термометров в комплекте
Диапазон измерения, °С
Цена деления
шкалы, °С
Погрешность
измерения, °С
комплекта
термометров
одного термометра
TP-I
ТР-Н
ТР-Ш
TP-IV
15
10
8
4
00...60
55... 155
140 ...300
300... 500
4
10
20
50
0,01
0,02
0,05
0,1
±0,01
±0,02
±0,05
±0,1
Лабораторные термометры снабжаются свидетельством, в котором указаны поправки к показаниям термометра на смещение нулевой точки и калибр, а также коэффициент внешнего давления в °С/мм рт. ст. (для введения поправки к показанию термометра при изменении внешнего атмосферного давления) и коэффициент внутреннего давления в °С/мм рт. ст. (для введения поправки к термометрам, измеряющим температуру в горизонтальном положении).
-
Введение поправок к показаниям термометра.
Смещение нулевой точки может возникнуть в результате естественного старения стекла. Например, в свидетельстве указано, что поправка, относящаяся к 300 0С равна -0,2°С, а положение нулевой точки смещено на -0,1 0С. Вновь найденное положение нулевой точки (лежащее в пределах допустимой погрешности -0,2°С) равно +0,10С. Тогда поправка к показанию термометра в точке 3000С равна:
Если при измерении температуры лабораторный термометр, тарированный при полном погружении, имеет выступающий столбик, то необходимо ввести поправку
,
где п
— высота
выступающего столбика в делениях шкалы;
= 0,00018 - коэффициент видимого объемного
расширения ртути, К-1;
t
— температура,
показываемая термометром, °С; tвс
— средняя
температура выступающего столбика, °С.
Следует заметить, что поправка на выступающий столбик, вследствие того, что температуру выступающего столбика невозможно точно определить, может быть определена с погрешностью не ниже ±10%. Таким образом, если необходимо определить в эксперименте точное значение температуры, то следует использовать более точный метод измерения.