Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ксеч2.doc
Скачиваний:
8
Добавлен:
28.10.2018
Размер:
880.13 Кб
Скачать

[Править] Пересмотренная последовательность Хаббла

Начиная с 1935 и до самой смерти в 1953 году Хаббл трудился над улучшением своей системы. Дело Хаббла продолжил его коллега А. Сендидж, который в 1961 году закончил пересмотр последовательности Хаббла[4]. Основные новшества обновленной последовательности Хаббла:

  • Добавлен класс линзовидных галактик (S0 и SB0). Эти галактики являются переходным классом от эллиптических к спиральным. Они характеризуются наличием яркого, хорошо выделяющегося ядра и более менее однородного диска, или линзы, с резкой границей, погружённые в диффузную оболочку, прослеживающуюся далеко за границы диска. Спиральные ветви отсутствуют.

Галактики S0 делят на два типа:

    • S0(1) — не имеющие структуры в диске и оболочке (NGC 1201, NGC 1332);

    • S0(2) — имеющие зачаточную структуру в оболочке в форме темных областей и колец. При виде сбоку кольца видны как петли, что придает сходство таких галактик с Сатурном (NGC 4459, NGC 4111).

Кроме того выделяется переходный класс S0/a. У галактик такого класса в оболочке наблюдают зарождающуюся спиральную структуру.

В галактиках SB0 виден бар, пересекающий линзу; иногда широкий и неясный, иногда узкий и резкий. В оболочке может сформироваться кольцо. Хаббл разделил эти галактики на 3 группы:

    • SB0 (1) — яркие линзы с широким и неясным баром, окруженные большой, тусклой, бесструктурной оболочкой (NGC 3384, NGC 4203);

    • SB0 (2) — слабый широкий бар и одно кольцо в оболочке (NGC 2859);

    • SB0 (3) — хорошо видимый бар и кольца (NGC 4653, NGC 5101).

  • Многие из галактик ранее классифицированные как SBa были перенесены в класс SB0. Определение класса SBa стало более строгим: галактики этого класса обладают гладким баром и линзой и слабо развитыми туго смотанными спиральными рукавами.

  • Произведено разделение пересеченных спиралей на группы (в группы вошли галактики классов SBa и SBb):

    • Рукава галактик начинаются от края кольца, пересеченного баром (NGC 2217 (SBa), NGC 5950 (SBb));

    • Рукава галактик начинаются на концах баров (NGC 4290 (SBa), NGC 6951 (SBb));

  • Сендидж также разделил на группы обыкновенные спирали:

    • галактики, у которых спиральные рукава начинаются на внешнем краю кольца;

    • галактики, у которых спиральные рукава начинаются из ядра.

  • Для спиральных галактик низкой поверхностной яркости со сложной, клочковатой структурой и слабо выраженным ядром введены обозначения Sd и SBd для обыкновенных и пересеченных соответственно. Для неправильных галактик, в которых удалось выявить подобие спиральной структуры, ввели обозначение Sm.

  • Введен класс карликовых эллиптических галактик (dE), открытых Шепли в 1938 году[5] в созвездиях Скульптор и Печь. Эти галактики обладают всеми морфологическими свойствами обычных эллиптических галактик, за исключением их крайне низкой поверхностной яркости

В целом, последовательность Хаббла охватывает большое многообразие галактик: от эллиптических, в которых нет газа и пыли, нет звездообразования и главная составляющая — старые звезды, через линзовидные и спиральные галактики, в которых по мере разрушения структуры увеличивается доля газа, пыли и молодых звезд, к неправильным галактикам, в которых поддерживается высокий темп звездообразования за счет большого числа пыли. Сам Хаббл считал эту последовательность эволюционной, что не нашло подтверждения в дальнейшем.

На сегодняшний день последовательность Хаббла наиболее востребована для классификации галактик как профессионалами, так и любителями астрономии.

Галактика Мле́чный Путь, называемая также просто Гала́ктика (с заглавной буквы), — гигантская звёздная система, в которой находится Солнечная система, все видимые невооружённым глазом отдельные звёзды, а также огромное количество звёзд, сливающихся вместе и наблюдаемых в виде млечного пути.

Млечный Путь — одна из многочисленных галактик Вселенной. Является спиральной галактикой с перемычкой типа SBbc по классификации Хаббла, и вместе с галактикой Андромеды (M31) и галактикой Треугольника (М33), а также несколькими меньшими галактиками-спутниками образует Местную группу, которая, в свою очередь, входит в Сверхскопление Девы.

Диаметр Галактики составляет около 30 тысяч парсек (порядка 100 000 световых лет) при оценочной средней толщине порядка 1000 световых лет. Галактика содержит, по самой низкой оценке, порядка 200 миллиардов звёзд (современная оценка колеблется в диапазоне предположений от 200 до 400 миллиардов). Основная масса звёзд расположена в форме плоского диска. По состоянию на январь 2009, масса Галактики оценивается в 3×1012 масс Солнца[4], или 6×1042 кг. Бо́льшая часть массы Галактики содержится не в звёздах и межзвёздном газе, а в несветящемся гало из тёмной материи.

Большинство небесных тел объединяются в различные вращающиеся системы. Так, Луна обращается вокруг Земли, спутники планет-гигантов образуют свои, богатые телами, системы. На более высоком уровне, Земля и остальные планеты обращаются вокруг Солнца. Возникал естественный вопрос, не входит ли и Солнце в систему ещё большего размера?

Первое систематическое исследование этого вопроса выполнил в XVIII веке английский астроном Уильям Гершель. Он подсчитывал количество звёзд в разных областях неба и обнаружил, что на небе присутствует большой круг (впоследствии он был назван галактическим экватором), который делит небо на две равные части и на котором количество звёзд оказывается наибольшим. Кроме того, звёзд оказывается тем больше, чем ближе участок неба расположен к этому кругу. Наконец обнаружилось, что именно на этом круге располагается Млечный Путь. Благодаря этому Гершель догадался, что все наблюдаемые нами звёзды образуют гигантскую звёздную систему, которая сплюснута к галактическому экватору.

Вначале предполагалось, что все объекты Вселенной являются частями нашей Галактики, хотя ещё Кант высказывал предположение, что некоторые туманности могут быть галактиками, подобными Млечному Пути. Ещё в 1920 году вопрос о существовании внегалактических объектов вызывал дебаты (например, известный Большой Спор между Харлоу Шепли и Гебером Кёртисом; первый отстаивал единственность нашей Галактики). Гипотеза Канта была окончательно доказана лишь в 1920-х годах, когда Эдвину Хабблу удалось измерить расстояние до некоторых спиральных туманностей и показать, что по своему удалению они не могут входить в состав Галактики.

Возможны столкновения нашей Галактики с иными галактиками, в том числе со столь крупной как галактика Андромеды, однако конкретные предсказания пока невозможны ввиду незнания поперечной скорости внегалактических объектов.

19. Современные представления о происхождении и строении Земли. Геосферы Земли.

Согласно современным научным предположениям около пяти миллиардов лет назад в газопылевом облаке, пронизанном магнитными силовыми линиями, образовалось сгущение - протосолнце, которое медленно сжималось. Другая часть облака с массой примерно в десять раз меньшей медленно вращалась вокруг него. В результате столкновений атомов, молекул и частиц пыли туманность постепенно сплющивалась и разогревалась. Так вокруг протосолнца образовался протяженный диск, пронизанный магнитными силовыми линиями. В значительной его части происходило интенсивное конвективно-турбулентное перемешивание вещества. Это благоприятствовало быстрому перераспределению энергии, освобождающейся при гравитационном сжатии облака. В результате этого газопылевой диск существенно охлаждался. Под действием светового давления легкие химические элементы водород и гелий "выметались" из близких окрестностей Солнца. И, наоборот, попадая на пылинки, световые лучи тормозили их движение вокруг Солнца. При этом пылевые частицы теряли свой орбитальный момент количества движения и приближались к Солнцу. Такой механизм торможения срабатывает даже в случае, если размеры частицы достигают нескольких метров. В конечном итоге это и привело к существенному различию в химическом составе планет, их разделению на две группы. После достижения "критической" плотности пылевой диск распался на отдельные сгущения. Далее в результате взаимных столкновений происходило слипание отдельных пылинок и образование твердых тел, для которых американский геолог Т. Чемберлин еще в 1901 году ввел название "планетезимали". По оценкам некоторых учёных превращение системы сгущений пыли в рой твердых тел продолжалось всего 10 000 лет на расстоянии Земли от Солнца и около 1 000 000 лет на расстоянии Юпитера. При этом масса планетезималей в области планет земной группы была значительно меньше, чем в области планет-гигантов. Все это время протосолнце проявляло очень высокую активность. При мощных вспышках оно выбрасывало потоки заряженных частиц, которые, при движении вдоль магнитных силовых линий, переносили момент количества движения от Солнца к протопланетному облаку. Кроме того, благодаря столкновениям высокоэнергичных легких частиц (протонов и нейтронов) с веществом протопланетного облака, происходили определенные ядерные реакции. Именно таким путем и образовался большой избыток легких химических элементов - лития, бериллия и бора, которых в земной коре и метеоритах значительно больше, чем в атмосфере Солнца. В результате взаимных столкновений планетезималий происходил рост одних и дробление других. Со временем орбиты крупнейших из них приближались к круговым, а сами они превращались в зародыши планет, объединяя все окружающее вещество. Расчеты показывают, что рост Земли до современных размеров продолжался всего 100 миллионов лет. Выпадение отдельных сгущений на Землю и ее сжатие привели к постепенному разогреву ее недр. На момент сформирования Земли температура в ее центре не превышала 800 oК, на поверхности 300 oК, а на глубине 300-500 км около 1500 oК. Со временем все большую роль здесь играли процессы радиоактивного распада, при которых выделялось значительное количество энергии. В результате этого отдельные области земных недр разогрелись до температуры плавления превышающей 4000oС. В дальнейшем после остывания примерно до 3000o С тяжелые элементы конденсировались, перейдя в жидкое состояние; при этом образовалось земное ядро из железа с примесью никеля. Более легкие металлы "всплыли наверх", т. е. в наружные слои, и образовали более холодную и большую по размерам "мантию". Этот начальный этап формирования земной коры продолжался около 1 миллиарда лет. Затем, когда температуры упали приблизительно до 1000oС, стала формироваться тонкая твердая, но подвижная земная кора. Благодаря слагающим ее древнейшим "горным породам" на Земле сохранилась "летопись" последующих событий, происходивших в течение ее долгой эволюции. В период между 3,7 и 2,2 миллиарда лет назад земная кора охладилась до температуры кипения воды. Теперь уже водяной пар мог конденсироваться из первоначальной атмосферы, которая содержала также аммиак, метан и двуокись углерода. В то время как на экваторе вода кипела, на полюсах мог идти дождь. "Вторичная" атмосфера, богатая кислородом, смогла установиться только по прошествии еще 0,5 - 2 миллиарда лет. Поскольку тогда еще не существовало защитного озонного слоя, интенсивное ультрафиолетовое излучение Солнца стимулировало протекание химических реакций. Происходили сильные извержения вулканов. Формировались океаны и континенты. В течение последнего миллиарда лет континенты стали "дрейфовать", а магнитные полюса - "блуждать". Было время, когда в Гренландии росли магнолии, кораллы встречались в арктических морях, а ледники покрывали пространства Бразилии и Конго. В последние 500 миллионов лет Северный магнитный полюс, никогда не удалявшийся от географического полюса (оси вращения Земли), двигаясь по какой-то неправильной траектории, сместился из своего прежнего положения в Тихом океане приблизительно в его современное местоположение, мало изменившееся за последние 60 миллионов лет. Временами происходили также непонятные изменения магнитной полярности (северная - на южную). Возможно, они были как-то связаны с изменениями в характере течения вещества в жидком железном ядре Земли. Приблизительно 500 миллионов лет назад три континента, называемые сейчас Северной Америкой, Европой и Азией, располагались вдоль экватора, тогда как четвертый гигантский континент находился в Южном полушарии и позднее превратился в Южную Америку, Африку, Австралию, Индию и Антарктиду. Первую группу материковых масс геологи назвали Лавразией, а вторую - Гондваной. Еще через 400 миллионов лет эти две группы слились в единый "суперконтинент", называемый теперь Пангеей. В то время столкновение Африки и Северной Америки привело к вздыманию Аппалачских гор, имевших 14-километровую высоту; теперь это старые и разрушенные горы. То была "эра земноводных", предшествовавшая появлению рептилий и динозавров. Еще через 200 миллионов лет суперконтинент начал раскалываться, разделяясь на северную и южную части. В течение последних 130 миллионов лет Африка три раза сталкивалась с Европой и "отскакивала" от нее, что привело к образованию Альпийских гор, вулканов и возникновению сильных землетрясений. Южная Америка начала отделяться от Африки, вероятно, 100 миллионов лет назад и соединилась с Северной Америкой лишь приблизительно 4 миллиона лет назад. Атлантический океан теперь расширяется, а Тихий сужается. На ранней стадии своего развития протоземля была окружена облаком небольших спутников, радиусы которых достигали 100 км. Со временем из них на расстоянии около 10 земных радиусов (60 000 км) сформировалась Луна. Одновременно началось ее медленное удаление от Земли, которое продолжается и теперь. Оно сопровождается уменьшением скорости вращения Земли вокруг своей оси. Вообще же современные научные представления о внутреннем строении Земли опираются на четыре считающиеся бесспорными тезиса: внутреннее ядро радиусом около 1300 км, в котором вещество, по всем данным, находится в твердом состоянии; внешнее ядро, радиус которого равен примерно 3400 км; здесь в слое толщиной около 2100 км, окружающем внутреннее ядро, вещество находится в жидком состоянии; оболочка или мантия толщиной около 2900 км и кора, толщина которой равна 4-8 км под океанами и 30-80 км под материками. Кора и мантия разделены поверхностью Мохоровичича, на которой плотность вещества земных недр резко возрастает от 3,3 до 5,2 г/см3. О прочем же можно говорить с той или иной степенью вероятности. Взять, к примеру, температуру в глубинных недрах Земли. Извержения вулканов не оставляют сомнения, что там - царство огненной стихии и расплавленных пород. Давно подмечено, что по мере спуска в шахты через каждые 33 метра температура повышается на 1o. Зная радиус Земли, нетрудно подсчитать, что в таком случае температура в самом ее центре должна достигать 60 000oК. У ученых эта цифра вызывает большие сомнения (хотя получена она вполне научными методами), и они снижают ее в 10-20 раз. Такие же расхождения существуют в представлениях о плотности и давлении в центре Земли, и о распределении химических элементов и т.п. Да и господствующая концепция первоначального огненно-жидкого ядра Земли, хотя и подтверждается наглядно вулканической деятельностью, не дает вразумительного ответа на вопросы, как это огненное ядро в свое время возникло и почему Земля быстро не остыла в соответствии с законами термодинамики. Приведенная здесь схема развития Земли (аналогично формировались и другие планеты) - лишь одна из возможных гипотез, детально разъясняющих, как именно планеты и Солнце образовались из одного газопылевого облака и что сами планеты сформировались из роя холодных и твердых тел. Тем не менее, природа нашей собственной Солнечной системы по-прежнему остается для нас загадкой.        Традиционное объяснение происхождения планет, согласно которому планеты образовались в процессе конденсации облаков космической пыли и газа, имеет под собой довольно шаткий фундамент, так как уравнения, описывающие взаимодействие газа в этих облаках, до сих пор не решены. В этой связи В. Мак-Рей, профессор университета в Суссексе, бывший президент Королевского Астрономического общества, пишет: "Проблема происхождения Солнечной системы продолжает оставаться, пожалуй, самой значительной из всех нерешенных проблем астрономии". Сказанного, пожалуй, достаточно для того, чтобы убедить любого непредвзятого человека в необоснованности претензий космологов на то, что они смогли успешно объяснить происхождение и природу явлений, куда более простых и доступных, чем гигантская Вселенная.

Геосфе́ры (от греч. гео — Земля, сфера — шар) — географические концентрические оболочки (сплошные или прерывистые), из которых состоит планета Земля[1].

Выделяются следующие геосферы: атмосфера, гидросфера, литосфера, земная кора, мантия и ядро Земли. Ядро Земли делится на внешнее ядро (жидкое) и центральное — субъядро (твёрдое).

Геосферы условно делятся на базовые или главные (литосфера, атмосфера и гидросфера и другие), а также относительно автономно развивающиеся вторичные геосферы: педосфера, антропосфера (Родоман Б. Б., 1979), социосфера (Ефремов Ю. К., 1961) и ноосфера (Вернадский В. И.). Область обитания организмов, включающая нижнюю часть атмосферы, всю гидросферу и верхнюю часть земной коры, называется биосферой. Криосфера характеризуется отрицательной или нулевой температурой, при которых вода, содержащаяся в парообразном, свободном или химически и физически связанном с другими компонентами виде, может существовать в твёрдой фазе (лёд, снег, иней и другие).

Статус геосферы им придаётся лишь исходя из значения в жизни человека на Земле, соизмеримого с ролью первичных геосфер.

Каждая из перечисленных выше геосфер изучается отдельной наукой или набором отдельных наук, изучающих каждую сферу на разных системных уровнях.

Первые предложения по сохранению единства знания о Земле и созданию обобщающей его науки прозвучали в виде синтетической концепции геосфер Э. Зюсса и в идее А. Геттнера. В России сторонником единой и общей географии был В. В. Докучаев.

По совокупности природных условий и процессов, протекающих в области соприкосновения и взаимодействия геосфер, выделяют специфические оболочки (например, географическую оболочку). Географическая оболочка было определена П. И. Броуновым в 1910 году, но затем по-разному определялась и ограничивалась А. А. Григорьевым, И. П. Герасимовым, И. М. Забелиным, С.В, Калесником, М. М. Ермолаевым, А. И. Рябчиковым и другими учёными.

В пределах географической оболочки сталкиваются и сложно взаимодействуют силы разного происхождения (в частности — солнечная энергия, энергия внутренних слоёв Земли, сила тяжести, движения воздушных, водных и литогенных потоков).

22. Гравитационное взаимодействие тел. Закон всемирного притяжения Ньютона. Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas — «тяжесть») — универсальное фундаментальное взаимодействие между всеми материальными телами. В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана.

В рамках классической механики гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m и M, разделёнными расстоянием R, пропорциональна обеим массам и обратно пропорциональна квадрату расстояния — то есть:

Здесь G — гравитационная постоянная, равная примерно 6,6725×10-11 м³/(кг·с²).

Закон всемирного тяготения — одно из приложений закона обратных квадратов, встречающегося также и при изучении излучений (см., например, Давление света), и являющегося прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Гравитационное поле, так же как и поле силы тяжести, потенциально. Это значит, что можно ввести потенциальную энергию гравитационного притяжения пары тел, и эта энергия не изменится после перемещения тел по замкнутому контуру. Потенциальность гравитационного поля влечёт за собой закон сохранения суммы кинетической и потенциальной энергии и при изучении движения тел в гравитационном поле часто существенно упрощает решение. В рамках ньютоновской механики гравитационное взаимодействие является дальнодействующим. Это означает, что как бы массивное тело ни двигалось, в любой точке пространства гравитационный потенциал зависит только от положения тела в данный момент времени.

Большие космические объекты — планеты, звезды и галактики имеют огромную массу и, следовательно, создают значительные гравитационные поля.

Гравитация — слабейшее взаимодействие. Однако, поскольку оно действует на любых расстояниях, и все массы положительны, это, тем не менее, очень важная сила во Вселенной. В частности, электромагнитное взаимодействие между телами на космических масштабах мало, поскольку полный электрический заряд этих тел равен нулю (вещество в целом электрически нейтрально).

Также гравитация, в отличие от других взаимодействий, универсальна в действии на всю материю и энергию. Не обнаружены объекты, у которых вообще отсутствовало бы гравитационное взаимодействие.

Из-за глобального характера гравитация ответственна и за такие крупномасштабные эффекты, как структура галактик, черные дыры и расширение Вселенной, и за элементарные астрономические явления — орбиты планет, и за простое притяжение к поверхности Земли и падения тел.

Гравитация была первым взаимодействием, описанным математической теорией. Аристотель считал, что объекты с разной массой падают с разной скоростью. Только много позже Галилео Галилей экспериментально определил, что это не так — если сопротивление воздуха устраняется, все тела ускоряются одинаково. Закон всеобщего тяготения Исаака Ньютона (1687) хорошо описывал общее поведение гравитации. В 1915 году Альберт Эйнштейн создал Общую теорию относительности, более точно описывающую гравитацию в терминах геометрии пространства-времени.

Основные законы движения тел позволили Ньютону сформулировать и математически

доказать следующую теорему: “Силы, которыми главные планеты постоянно отклоняются от прямолинейного движения и удерживаются на своих орбитах, направлены к Солнцу и обратно пропорциональны квадратам расстояния от его центра”. Доказав далее, что сила, удерживающая планеты на их орбитах, тождественна с силой тяжести, действующей на поверхности Земли, Ньютон обобщил эту теорему и выразил ее в форме закона всемирного тяготения: “Каждые две частицы материи притягивают взаимно друг друга, или тяготеют друг к другу, с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними”.

Математически закон всемирного тяготения Ньютона записывается так:

где m1 и m2 - массы частиц, r - расстояние между ними, f - коэффициент

пропорциональности, равный силе, с которой притягиваются друг к другу две

частицы с единичными массами и находящиеся на единичном расстоянии друг от

друга.

Коэффициент f называется постоянной тяготения, или гравитационной постоянной.

В системе CGS (сантиметр, грамм, секунда)

f = 6,67 є 10 -8 см3 / г є сек2

Следовательно, две материальные частицы, с массами по 1 г каждая и находящиеся

на расстоянии 1 см одна от другой, притягиваются друг к другу с силой в дины.

В астрономии расстояния между Солнцем и планетами часто выражают в

астрономических единицах (а.е.), массы небесных тел в массах Солнца, а время - в

средних солнечных сутках. В этой системе единиц, называемой гауссовой,

постоянная тяготения f = k2 = 0,00029591, а величина k = 0,0172021 "

называется гауссовой постоянной.

24. Электрический заряд, электрическое поле и их характеристики. Энергия электрического поля.

Электри́ческий заря́д — это связанное с телом свойство, позволяющее ему быть источником электрического поля и участвовать в электромагнитных взаимодействиях. Заряд является количественной характеристикой. Единица измерения заряда в СИ — кулон — электрический заряд, проходящий через поперечное сечение проводника при силе тока 1А за время 1с. Впервые электрический заряд был введён в законе Кулона в 1785 году. Заряд в один кулон очень велик. Если бы два носителя заряда (q1 = q2 = 1Кл) расположили в вакууме на расстоянии 1 м, то они взаимодействовали бы с силой 9×109 H.

Взаимодействие зарядов

Взаимодействие зарядов: одноименно заряженные тела отталкиваются, разноименно — притягиваются друг к другу

Самое простое и повседневное явление, в котором обнаруживается факт существования в природе электрических зарядов, — это электризация тел при соприкосновении[4]. Способность электрических зарядов как к взаимному притяжению, так и к взаимному отталкиванию объясняется предположением о существовании двух различных видов зарядов. Один вид электрического заряда называют положительным, а другой — отрицательным. Разноимённо заряженные тела притягиваются, а одноимённо заряженные — отталкиваются друг от друга.

При соприкосновении двух электрически нейтральных тел в результате трения заряды переходят от одного тела к другому. В каждом из них нарушается равенство суммы положительных и отрицательных зарядов, и тела заряжаются разноимённо.

При электризации тела через влияние в нём нарушается равномерное распределение зарядов. Они перераспределяются так, что в одной части тела возникает избыток положительных зарядов, а в другой — отрицательных. Если две эти части разъединить, то они будут заряжены разноимённо.

Во всяком теле сод-ся большое кол-во элемент. частиц вещ-ва,обладающими э. зарядами (протоны+,электроны-)Э. заряды неразрывно связаны с окруж. их электромагнитным полем, которое представляет собой особый вид материи.Э/м поле состоит из двух взаимосвязанных сторон - э.поле и м.поле.Взаимодействие заряж.те5л происходит посредством э.поля.Э.поле способно оказывать силовое воздействие=> способно совершать работу => оно обладает эн-ей - электр.эн-ия.Каждая точка э.поля характеризуется напряженностью э.поля эдс=F/Q, где F сила с которой поле действует на точечный заряд Q. Точечный заряд- это заряженное тело размеры и заряд которого очень малы и не искажает рассматриваемое поле.При Q=1 Кл, F=эдс => напряженность поля численно равна силе поля, действующий на единичный заряд. Напряженность - векторная величина, направление которой совпадает с направлением силы поля. Графически напряженность изобр-ся линиями напряженности э.поля, которые начинаются на + и оканчиваются на -.Поле наз-ся однородным если во всех его точках векторы напряженности равны.Допустим что пробный заряд Q переместился в однородном э.поле из точки М в точку Н на расстояние l в направление поля.Работа совершеная при этом будет равна A=Fl.Величина равная отношению работы по перемещению заряда Q м/у двумя точками к заряду наз-ся напряжением. U=A /Q/ Напряжение данной точки М и другой произвольно выбранной точки, потенциал которой равен 0, наз-ся потенциалом фи данной точки. Потенциалом наз-ся работа совершенная силами э.поля при перемещение заряда из данной точки в точку потенциал которой равен нулю.Напряжение м/у двумя точками численно равна разности потенциалов.Пов-ть все точки которой имеют равные потенциалы наз-ся эквивалентной или равнопотенциальной.

Энергия электрического и магнитного полей

Для электрического и магнитного полей их энергия пропорциональна квадрату напряжённости поля. Следует отметить, что, строго говоря, термин энергия электромагнитного поля является не вполне корректным. Вычисление полной энергии электрического поля даже одного электрона приводит к значению равному бесконечности, поскольку соответствующий интеграл (см. ниже) расходится. Бесконечная энергия поля вполне конечного электрона составляет одну из теоретических проблем классической электродинамики. Вместо него в физике обычно используют понятие плотности энергии электромагнитного поля (в определенной точке пространства). Общая энергия поля равняется интегралу плотности энергии по всему пространству.

Плотность энергии электромагнитного поля является суммой плотностей энергий электрического и магнитного полей.

В системе СИ:

В вакууме (а также в веществе при рассмотрении микрополей):

где E — напряжённость электрического поля, B — магнитная индукция, D — электрическая индукция, H — напряжённость магнитного поля, с — скорость света,  — электрическая постоянная, и  — магнитная постоянная. Иногда для констант и  — используют термины диэлектрическая проницаемость и магнитная проницаемость вакуума, — которые являются крайне неудачными, и сейчас почти не употребляются.

25. Электрический ток, магнитное поле и их характеристики. Энергия магнитного поля. Электри́ческий ток — упорядоченное нескомпенсированное движение электрически заряженных частиц, например, под воздействием электрического поля. Такими частицами могут являться: в проводниках — электроны, в электролитах — ионы (катионы и анионы), в полупроводниках — электроны и дырки (электронно-дырочная проводимость).

Электрический ток широко используется в энергетике для передачи энергии на расстоянии.

В медицине электрический ток используют в реанимации, для лечения психических заболеваний, особенно депрессии, электростимуляции определённых областей головного мозга. Электрические разряды применяются для лечения таких заболеваний, как болезнь Паркинсона и эпилепсия, также для электрофореза. Водитель ритма, стимулирующий сердечную мышцу импульсным током, используют при брадикардии.

Исторически принято, что направление тока совпадает с направлением движения положительных зарядов в проводнике. При этом, если единственными носителями тока являются отрицательно заряженные частицы (например, электроны в металле), то направление тока противоположно направлению движения электронов.

Скорость направленного движения частиц в проводниках зависит от материала проводника, массы и заряда частиц, окружающей температуры, приложенной разности потенциалов и составляет величину, намного меньшую скорости света. Несмотря на это, скорость распространения собственно электрического тока равна скорости света, то есть скорости распространения фронта электромагнитной волны.

Различают постоянный (англ. direct current, DC — постоянный ток) и переменный (англ. alternating current, AC — переменный ток) ток.

  • Постоянный ток — ток, направление и величина которого слабо меняется во времени.

  • Переменный ток — это ток, направление и величина которого меняется во времени. Среди переменных токов основным является ток, величина которого изменяется по синусоидальному закону. В этом случае потенциал каждого конца проводника изменяется по отношению к потенциалу другого конца проводника попеременно с положительного на отрицательный и наоборот, проходя при этом через все промежуточные потенциалы (включая и нулевой потенциал). В результате возникает ток, непрерывно изменяющий направление: при движении в одном направлении он возрастает, достигая максимума, именуемого амплитудным значением, затем спадает, на какой-то момент становится равным нулю, потом вновь возрастает, но уже в другом направлении и также достигает максимального значения, спадает, чтобы затем вновь пройти через ноль, после чего цикл всех изменений возобновляется. Время, за которое происходит один такой цикл (время, включающее изменение тока в обе стороны), называется периодом переменного тока. Количество периодов, совершаемое током за единицу времени, носит название частота. Частота измеряется в герцах, один герц соответствует одному периоду в секунду.

Переменный ток высокой частоты вытесняется на поверхность проводника, этот эффект называется скин-эффектом.