Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Статистика - лекции 1 ).docx
Скачиваний:
24
Добавлен:
27.10.2018
Размер:
576.25 Кб
Скачать
  1. Показатели вариации.

7.1. Колеблемость и вариация как измеритель колеблемости.

Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае.

Колеблемость отдельных значений характеризуют показатели вариации. Термин «вариация» произошел от лат. variatio — изменение, колеблемость, различие. Однако не все различия принято называть вариацией.

Под вариацией в статистике понимают такие количественные изменения величины изучаемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают случайную и систематическую вариации. Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, можно оценить, насколько однородной является совокупность. Для характеристики совокупностей и исчисленных средних величин важно знать, какая вариация изучаемого признака скрывается за средними.

Основа показателей — общая оценка отклонений значений показателей элементов совокупности от средней.

Размах представляет собой разность между максимальной и минимальной величиной признака и является простейшей характеристикой вариации:

. (7.1)

Среднее линейное отклонение:

, (7.2)

где X — значение показателя;

— среднее арифметическое значение.

Среднее линейное отклонение в чистом виде для анализа не применяют. Оно ввиду использования модуля не очень удобно для расчетов, что и объясняет малую употребительность данной характеристики вариации.

7.2. Дисперсия и стандартное отклонение.

Сумма квадратов отклонений от среднего является основой для вычисления относительного показателя — дисперсии в простейшем случае несгруппированных данных:

,   (7.3)

или дисперсия для сгруппированных данных и для интервальных рядов:

,   (7.4)

где .

Корень квадратный из дисперсии называется средним квадратическим отклонением, или стандартным отклонением, и обозначается σ .

В отличие от дисперсии, этот показатель, также показывающий степень вариации признака, имеет размерность самого признака, а не его квадрата, что представляет определенное удобство. Далее мы увидим, что стандартное отклонение имеет важное значение в теории оценивания неизвестных параметров (например, среднего генеральной совокупности) и в теории ошибок выборочного наблюдения.

Еще одним важным показателем, характеризующим вариацию признака и позволяющим сравнивать вариации различных совокупностей, является коэффициент вариации:

.   (7.5)

По величине коэффициента вариации можно судить о степени вариации признаков совокупностей. Чем больше его величина, тем больше разброс значений вокруг средней, тем менее однородна совокупность по своему составу и тем менее представительна средняя. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33%. Коэффициент вариации важен и в тех случаях, когда нужно сравнивать средние квадратические отклонения, выраженные изначально в разных единицах измерении, для различных совокупностей.

Дисперсия характеризуется двумя важными и весьма полезными для ее вычисления свойствами:

1) если все значения признака уменьшить или увеличить на одну и ту же постоянную величину А, то дисперсия от этого не изменится;

2) Если все значения признака уменьшить или увеличить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится или увеличится в i2 .