- •Федеральное агентство по образованию Российской Федерации
- •Тема 12. Основы теории электронных приборов
- •Тема №2.Электрическое поле.Электрические цепи постоянного тока.
- •Тема №3. Магнитное поле.Магнитные цепи. Индуктивность и ёмкость в электрических цепях.
- •Свойства ферромагнитных материалов. Гистерезис.
- •Тема №4. Однофазные электрические цепи синусоидального тока.
- •Тема№5.Общие свойства четырёхполюсников.
- •Тема №6. Переходные процессы в электрических цепях.
- •Тема№7.Методы расчёта переходных процессов.
- •Какому знаку подчиняется сигнал на выходные цепи (вывод формулы)
- •Тема №8. Трехфазные электрические цепи.
- •Тема №9.Периодические и апериодические несинусоидальные сигналы.
- •Тема№10.Расчёт электрических цепей с помощью оператора Лапласа.Спектры.
- •Передаточная функция и ее связь с дифференциальным уравнением, импульсной и частотной характеристикой
- •Раздел 2. Электроника Тема 12. Основы теории электронных приборов
- •Параметры, характеристики выпрямительных диодов. Типы полупроводниковых диодов.
- •Параметры диодов.
- •Выпрямительные диоды
- •Усиление электрических сигналов с помощью биполярного транзистора.
- •Параметры транзистора:
- •Общая характеристика схем включения транзисторов p-n-p типа.
- •Полевые транзисторы.
- •Полевые транзисторы с изолированным затвором.
- •Полевой транзистор со встроенным каналом (мдп- транзистор).
- •Транзистор с индуцированный каналом (моп- транзистор).
- •Транзистор с затвором Шотки.
- •Силовые полупроводниковые приборы.
- •Оптоэлектроника.
- •Светодиод.
- •Тема 13. Транзисторные усилители электрических сигналов.
- •Коэффициент усиления.
- •Импульсные усилители (иу).
- •Электрические фильтры.
- •Дифференцирующие цепи.
- •Дифференцирующая rl-цепь
- •Интегрирующие цепи(фнч) (фильтр высоких частот)
- •Интегрирующая rc-цепь.
- •Интегрирующая rl-цепь
- •Активные фильтры.
- •Интегральные микросхемы
- •Тема 14. Аналоговые и цифровые элементы и устройства.
- •Логические элементы в дискретном исполнении
- •Триггеры в интегральном исполнении.
- •Тема 15. Комбинационные цифровые устройства.
- •Сумматоры
- •Демультиплексор
- •Регистры (узлы накапливающего типа)
- •Набор элементарных операций:
- •Параллельный статический регистр.
- •Расшифровка временной диаграммы.
- •Цифроаналоговые преобразователи (цап).
- •Аналого-цифровые преобразователи (ацп).
- •Запоминающие устройства (зу).
- •Классификация зу.
- •Тема 16. Источники вторичного питания. Генераторы.
- •Internet-ресурсы.
- •Http://ktf.Krk.Ru/courses/foet/(Сайт содержит информацию по разделу «Электроника»)
- •Http://www.College.Ru/enportal/physics/content/chapter4/section/paragraph8/theory.Html(Сайт содержит информацию по теме «Электрические цепи постоянного тока»)
Светодиод.
Светодиоды – это такие приборы, которые имеют один p-n переход, преобразующий электрическую энергию в энергию некочерентной световой волны. Это явление происходит при протекании прямого тока диода в результате рекомбинации электронов и дырок в области p-n перехода и результатом этого явления получают излучение фотонов. Условное графическое изображение светодиода.

Фотодиод.
Фотодиоды – это приборы в которых выдимое оптичесок излучение воздействует на p-n переход и за счёт внутреннего фотоэффекта происходит разделение пар и образуется гальванический элемент. Условное графическое изображение фотодиода:

Фоторезистор.
Фоторезисторы – это приборы, электрическое сопротивление которых изменяется в зависимости от падающей на него интенсивности и спектрального состава светового луча. Поток фотонов вызывает появление пар электрон-дырка, которые уменьшают сопротивление резистора. Явление уменьшения сопротивления резисторов под воздействием света называют внутренним фотоэффектом. Условное графическое изображение фоторезистора:

Фототранзистор.
Фототранзисторы – это биполярные транзисторы, в которых при попадании света на базу транзистор открываеся . условное графическое изображение фототранзисторов структуры n-p-n.

При
включении фототранзисторов по схеме с
ОЭ базовый фототок увеличивается в
-
раз (
=50÷200).
Это говорит о том, что фоточувствительность
прибора очень высока.
Оптроны.
Оптроны – это приборы, состоящие из источника и приёмника светового излучения, которые помещены в один корпус
Различают следующие оптроны (оптопары):
Резисторная оптопара

Диодная оптопара

Транзисторная оптопара

Рассмотрим простейшую схему усилителя на диодной оптопаре (рис. 1-37).

Рис. 12-37. Схема усилителя на диодной оптопаре.
В рассматриваемой схеме находится транзистор VT, с которого можно снимать усиленный сигнал. Uвх подаётся на светодиод и световая энергия от него попадает на вход фотодиода, который преобразует световую энергию в электрическиу, которая снимается с Uвых.
Тема 13. Транзисторные усилители электрических сигналов.
Усилителями электрических сигналов называют устройства, предназначенные для усиления мощности электрических сигналов. Обилие задач, решаемых при помощи электрических усилителей, весьма разнообразно, и поэтому трудно классифицировать усилители по какому–либо одному признаку Довольно распространенной является классификация усилителей по типу применяемых усилительных элементов (ламповые, полупроводниковые, оптоэлектронные) и по полосе пропускаемых частот:
а) усилителя низкой частоты (20 – 30000 Гц);
б) усилители высокой частоты (свыше 100 кГц);
в) усилители широкополосные (от долей Гц до нескольких МГц);
г) усилители постоянного тока (медленные колебания напряжения или тока).
Обычно любой электрический усилитель содержит несколько усилительных каскадов, каждый из которых является самостоятельным простейшим усилителем.
Усилительный каскад содержит активный усилительный элемент (полупроводник) и набор вспомогательных деталей (конденсаторов, резисторов, индуктивностей), обеспечивающих заданный режим работы усилительному элементу и связь между отдельными усилительными каскадами. Кроме того, в состав усилителя входят входные и выходные устройства и источники питания сетевого или автономного.
Структурную схему усилителя можно представить в следующем виде (рис.2-1)
В общем виде усилитель можно рассматривать как регулятор мощности электрической энергии, поступающей из источников питания в нагрузку, причем это регулирование осуществляется в соответствии с изменением входного сигнала (непрерывно, плавно, линейно и однозначно).
Название отдельных элементов структурной схемы усилителя следующее:
1. Входное устройство – «ВХ.У» предназначается для согласования сопротивлений источника сигнала – « ec » с входа первого каскада предварительного усиления – «1КПУ».
2. Каскады предварительного усиления (их может быть несколько) усиливают амплитуду входного сигнала до величины, необходимой для нормальной работы усилителя мощности – «УМ».
3. Усилитель мощности (иногда его называют оконечным усилителем) предназначен для отдачи в нагрузку заданной мощности усиленного сигнала – Р.
По способу соединения отдельных усилительных каскадов между собой различают усилители:
с непосредственными (гальваническими) связями;
резистивно–емкостными связями (RC –усилители);
с трансформаторными связями.
При усилении электрических сигналов неизбежно возникают некоторые отклонения формы выходного сигнала от формы входного. Данные, характеризующие свойства усилителя и вносимые им искажения, называются показателями качества работы усилителя. Важнейшими из них являются следующие:

Рис. 13-1 Структурная схема усилителя (блок-схема)
