Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
curkin_uchebnik_po_kursu_elektrotexniki_i_elektroniki / curkin_uchebnik_po_kursu_elektrotexniki_i_elektroniki.doc
Скачиваний:
75
Добавлен:
13.02.2018
Размер:
19.77 Mб
Скачать

Параметры, характеристики выпрямительных диодов. Типы полупроводниковых диодов.

Полупроводниковый диод – это полупроводниковый прибор с одним р–п переходом и двумя омическими контактами. Он чаще всего образуется между двумя полупроводниками р–и п–типа, иногда между полупроводником и металлом.

Одна из областей (низкоомная) является эмиттером, другая (высокоомная) –базой.

Параметры диодов.

Максимально допустимый ток, постоянное прямое напряжение, максимально допустимое обратное напряжение, максимально допустимый обратный ток, дифференциальное сопротивление.

По типу р–п перехода диоды делят на два класса: точечные и плоскостные.

По назначению и принципу работы диоды бывают следующих типов: выпрямительные, стабилитроны (стабилизаторы напряжения), вариканты, туннельные, и др.

Выпрямительные диоды

Условное обозначение туннельных диодов в схемах

В выпрямительных диодах используется свойство односторонней проводимости p-nперехода. Такие диоды применяются в качестве вентилей, которые пропускают переменный ток только в одном направлении. Принцип работы таких приборов будет рассмотрен в главе «Источники вторичного питания».

Схема замещения выпрямительного диода представлена на рисунке 12-9.

Рис. 12-9 Схема замещения выпрямительного диода

Включенное в схему сопротивление “r” определяет учет утечки электрического тока, электроемкость С учитывает диффузионную и барьерную электроемкость p-n перехода, i – управляемый источник электрического тока, который моделирует ВАХ p-n перехода.

СТАБИЛИТРОН.

Такой полупроводниковый прибор, который работает в режиме электрического пробоя p-n перехода. Условное графическое обозначение стабилитрона в схемах

Обратная ветвь ВАХ (рис. 12-7) имеет значительный излом, который характеризуется резким ростом электрического тока. При резком возрастании тока наблюдается соответствующее напряжение стабилизации, которое может охватить диапазон 4-÷180 В. Эффект стабилизации состоит в том, что резкое возрастание электрического тока вызывает незначительное изменение напряжения, которое практически незаметно.

ВАРИКАП.

Этот полупроводниковый прибор предназначен для работы в качестве конденсатора переменной емкости. Условное графическое обозначение варикапа в схемах

Работа варикапа в режиме конденсатора объясняется следующим образом. Если подать на варикап обратное напряжение, то барьерная электроемкость варикапа уменьшается при увеличении напряжения и наоборот. Варикапы используются для электрической настройки колебательных контуров.

Туннельные диоды.

Условное обозначение туннельных диодов в схемах

Эти диоды изготовляются на основе вырожденного полупроводника, т.е. из такого материала, содержание примесей в котором очень велико. Вследствие высокой концентрации примесей удельные сопротивления областей р–и n типа очень малы, а ширина р–n перехода составляет примерно 0,02 мкм, что в сто раз меньше, чем в других полупроводниковых диодах. Напряженность электрического поля в таких р–n переходах достигает огромной величины – до 106 В/см.

Рис.12-9 Вольтамперная характеристика тунельного диода

На вольтамперной характеристике туннельного диода наблюдают следующие участки:

  1. Рост электрического тока до максимального значения (точка «а»);

  2. Снижение электрического тока до минимального значения (точка «В»);

  3. Рост электрического тока от точки минимального значения (до уровня точка «а»).

Из рисунка 12-9 видно, что на участке «аВ» рост напряжения соответствует «отрицательному приращению» электрического тока. В этом случае говорят об «отрицательном» сопротивлении (-R) или «отрицательном значении дифференциальной проводимости ().

Благодаря своей своеобразной ВАХ, туннельные диоды используют в качестве быстродействующих переключающих устройств, для усиления и генерирования электрических сигналов.

Схема замещения туннельного диода на участке отрицательного сопротивления для малого сигнала представлена на рисунке 1-10.

Рис. 12-10. Схема замещения туннельного диода

В этой схеме С – общая электроемкость туннельного диода в точке «В»; -R – отрицательное сопротивление; r – сопротивление потерь; L – индуктивность выходов.

Диод Шотки.

Условное обозначение

Диод Шотки выполнен на основе контакта металл-полупроводник и при этом работа выхода электронов в металле больше работы выхода электронов в полупроводнике. При идеальном контакте металла и полупроводника происходит диффузия электронов из полупроводника и металл заряжается отрицательно, и при этом в приконтактной области полупроводника образуется слой, который обеднен основными носителями заряда и заряжен положительными ионами доноров. В результате возникает электрическое поле, напряженность которого направлена в сторону к металлу. Возникшее электрическое поле не дает возможности движению электронов в металл и возникает потенциальный барьер.

При прямом включения источника напряжения диода Шотки, потенциальный барьер снижается и электроны переходят в металл. При обратном включении – высота потенциального барьера повышается и этот барьер могут преодолеть только дырки, которые создают обратный ток. Концентрация дырок мала и обратный ток очень незначительный.

Таким образом в диоде Шотке создается также, как и в обычном p-n переходе, запирающий слой, который обладает выпрямляющими свойствами. Кроме того, этот слой является неинежктирующим (инжекция – впрыскивание) и имеет незначительную барьерную электроемкость. Также свойства позволяют создавать на основе диода Шотки полупроводниковые приборы с идеальными характеристиками.

Влияние температуры на работу полупроводниковых диодов.

На электропроводимость полупроводников значительно влияет температура. Если температура повышается, то возрастает генерация пар носителей заряда и при этом электропроводимость возрастает. В этой связи прямой и обратный токи увеличиваются. Например для германиевых диодов при увеличении температуры на каждые 10° С обратный ток может возрасти в два раза, а для кремниевых диодов в 2,5 раза. Прямой ток при нагреве диода возрастает незначительно, так как такой ток получается за счет примесной проводимости. Также с повышением температуры незначительно возрастает барьерная электроемкость диода.

Биполярные транзисторы - биполярным транзистором называют полупроводниковый прибор с тремя областями чередующегося типа электрической проводимости, разделенными двумя взаимодействующимир–ппереходами, способный усиливать мощность.

Конструктивно–сплавной биполярный транзистор представляет собой пластинку монокристалла полупроводника проводимостью pилиn– типа, по обеим сторонам которой наплавлены полупроводники, образующие с данным полупроводником иной тип проводимости.

На рис.12-11 показана конструкция транзистора, в которой в пластинку германия n–типа вплавлены по обеим сторонам шарики индия, образующие с германием проводимостьp–типа.

Рис. 12-11. Реальная структура сплавного транзистора p-n-p

На рис.12-12 показана упрощенная плоскостная структура транзистора.

а) б)

Рис.12-12. Упращённая структура транзистора p-n-p (а) и n-p-n (б)

Э-эмиттер, Б-база, К-коллектор

Крайние области транзистора называют эмиттером и коллектором среднюю – базой, р–п переходы соответственно называют эмиттерным и коллекторным. Если эмиттер и коллектор обладают дырочной проводимостью (области р), а база – электронной проводимостью (область п), структура транзистора р–п–р. Если проводимости областей транзистора противоположна названным, его структура п–р–п.

Принцип действия транзисторов обеих структур одинаков и основан на использовании свойств р–п переходов.

Условное обозначение транзисторов в схемах полярности напряжений в активном (усилительном) режиме работы и направления токов показаны на рис.12-13

Рис. 12-13. Условное обозначение транзисторов структур р–п–р (а) и п–р–п (б), полярности напряжений в активном режиме работы и направления токов.

Различают 3 схемы включения транзисторов в зависимости от того, какой вывод транзистора принимается общим для его входной и выходной цепей (см. рис.12-14) :

  1. с общей базой (ОБ),

  2. с общим эмиттером (ОЭ)

  3. с общим коллектором (ОК)

Рис.12-14. Схемы включения транзисторов:

а) с общей базой.

б) с общим эмиттером.

в) с общим коллектором.

Транзисторы в схемах могут работать в различных режимах: активном (усилительном), насыщения и отсечки. Последние два режима называют ключевыми.

Рассмотрим принцип работы транзистора структуры р–п–рна примере схемы с общей базой. Обычно для исследования работы транзистора используют условную плоскостную схему (рис.12-15).

Рис.12-15 Направления токов в транзисторе

Для работы транзистора в активном режиме на его эмиттерный переход подается небольшое по величине напряжение в прямом направлении, а на коллекторный переход – значительно большее по величине (примерно, на порядок) напряжение в обратном направлении. При подаче напряжения на эмиттерный переход в прямом направлении понижается высота его потенциального барьера, поэтому дырки вследствие разности концентрации их в эмиттере и базе (т.е. вследствие диффузии) инжектируются (впрыскиваются) в область базы, образуя дырочный ток эмиттера ,Iэр.

Одновременно из области базы в результате диффузии в области эмиттера переходят электроны базы, образуя в эмиттере электронный ток Iэп.

Итак, ток эмиттера равен:

Iэ=Iэр+Iэn (12.13)

Ток Iэn не участвует в создании коллекторного (выходного) тока транзистора и только нагревает эмиттерный переход, поэтому его величину уменьшают. Для этого базу насыщают донорной примесью незначительно. Из–за малой величины тока Iэn им часто пренебрегают.

Инжектированные в область базы дырки у эмиттерного перехода имеют значительную концентрацию и за счет диффузии перемещаются в сторону коллекторного р–пперехода. Так как поле коллекторного перехода для дырок является ускоряющим, происходит экстракция (всасывание) дырок в область коллектора. Поскольку их концентрация около коллекторного перехода выше, чем в остальной части коллектора, за счет диффузии дырки перемещаются в сторону омического контакта, где рекомбинируют с электронами, поступающими от источника Екб. Таким образом, дырки от эмиттера через базу попадают в коллектор, образуя дырочную составляющую токаIкрв области коллектора. ТокиIэриIкрпо величине не равны, так как часть дырок эмиттера, попавших в область базы, не доходит до коллекторного перехода, рекомбинируя с электронами базы, в результате чего исчезают и дырка и электрон. В базе вследствие этого процесса протекает составляющая тока базы называемая током рекомбинацииIбрэк.

Вместе с основными носителями заряда через эмиттерный и коллекторный переходы движутся не основные носители, образующие дрейфовую составляющую тока в каждой из областей транзистора.

Влияние на свойства транзистора оказывает дрейфовый ток, образованный перемещением не основных носителей через коллекторный переход: дырок, из области базы и электронов из области коллектора. Этот ток называют обратным током коллекторного перехода Iко.

Так как он образуется в результате генерации пар носителей дырка–электрон при повышении температуры сверх К, его называют тепловым током. С повышением температуры он растет по экспоненциальному закону. В германиевых транзисторах при повышении температуры на каждыеКIковозрастает в 2 раза, в кремниевых – в 2,5 раза.

Величина Iконе зависит от величины потенциального барьерар–пперехода, так как полер–пперехода для не основных носителей является ускоряющим, она зависит от температуры транзистора, т.е.Iкоявляется неуправляемым током.

Таким образом, можно записать значения токов, протекающих в отдельных областях транзистора в схеме ОБ.

Ток эмиттера был определен выше:

Iэ=Iэр+IэпIэр (12.14)

Ток базы

Iб=IэnIбрэк–Iко (12.15)

Ток коллектора

Iк=Iкр+Iко. (12.16)

Из уравнений (14),(15),(16) можно установить

Iэ=Iб+Iк, (12.16)

что соответствует 1–му закону Кирхгофа.

Токи Iк и Iб содержат составляющую Iко, следовательно, их величина, как и Iко, изменяется с изменением температуры. Для того, чтобы поддерживать величины этих токов на определенном уровне вне зависимости от температуры, схемы, в которых работает транзистор, стабилизируют.

Итак, через транзистор течет сквозной дырочный ток от эмиттера через базу в коллектор, а в выводах транзистора – электронный ток.

Напомним, что за положительное направление тока принимают направление движения положительных зарядов (дырок), т.е. направление, противоположное направлению движения электронов (см. рис.12-15)

Током коллектора можно управлять. Для изменения его величины следует изменять величину напряжения источника питания Еэ. С увеличениемЕэуменьшается высота потенциального барьера эмиттерного перехода и увеличивается токIэ, а, следовательно, и токIк. Таким образом, ток эмиттера является управляющим током, а ток коллектора – управляемым. Поэтому транзистор часто называют прибором, управляемым током.