
- •1. Клетка – элементарная генетическая и структурно-функциональная биологическая система.
- •2. Клеточная теория. Современное состояние клеточной теории.
- •6. Строение и функции оболочки животной эукариотической клетки.
- •7. Трансмембранный транспорт веществ в клетке.
- •8. Цитоплазма: основное вещество, цитоскелет, органеллы.
- •2. Наследственный аппарат клеток. Химическая и структурная организация хромосом.
- •6. Наследственный аппарат клеток человека. Кариотип человека, характеристика кариотипа в норме.
- •Механизмы регуляции митотической активности.
- •Половой диморфизм: генетический, морфофизиологический, эндокринный и поведенческий аспекты.
- •Партеногенез.
- •Общая характеристика половых клеток, или гамет.
- •7. Закон расщепления. Доминантность и рецессивность.
- •8. Закон чистоты гамет. Анализирующее скрещивание.
- •3 Части семян жёлтых морщинистых, 3 части семян – зелёных гладких и I часть семян – зелёных морщинистых.
- •Контролируемых генами х- и у-хромосом человека.
- •Линейное расположение генов в хромосомах. Генетические и цитологические карты хромосом.
- •Неаллельных генов в детерминации признаков.
- •Множественные аллели. Наследование групп крови по системе аво.
- •Комплементарность. Эффект положения.
- •Полимерия. Полигенное наследование как механизм наследования количественных признаков.
- •Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, поле действия гена, плейотропия, генокопии.
- •Перенос биологической информации на белок (трансляция). Структура, виды и роль рнк.
- •Гипотеза «один ген – один фермент», ее современная трактовка..
- •5. Регуляция экспрессии генов у прокариот и эукариот.
- •Генные мутации. Понятие о генных болезнях.
- •Антимутационные барьеры организма.
- •Репарация генетического материала. .
- •Генные болезни, механизмы их развития, наследования, частота возникновения.
- •1. Структурные мутации хромосом (хромосомные аберрации).
- •Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.
- •Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
- •Радиационные мутации. Генетическая опасность загрязнения окружающей среды.
- •Анеуплоидия.
- •4. Медико-генетическое консультирование.
- •5. Пренатальная диагностика:
-
Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.
Дупликация – удвоение какого-то участка хромосомы (этот участок может повторяться многократно). Дупликации могут быть прямыми и обратными.
При данных мутациях увеличивается доза генов в генотипе, и в гомозиготном состоянии эти мутации летальны. В гетерозиготном состоянии они проявляются множественными пороками развития. Однако эти мутации могли играть определенную роль в ходе эволюции. Таким образом могли возникнуть семейства генов гемоглобина.
Возможно, многократно повторяющиеся последовательности нуклеотидов ДНК появились в результате дупликаций.
Выявление дупликаций:
-
дифференциальное окрашивание.
-
фигура петли в профазу мейоза 1. Петля возникает на мутировавшей хромосоме.
Инверсия – отрыв участка хромосомы, поворот его на 180° и присоединение на старое место. При инверсиях доза генов не меняется, но изменяется порядок расположения генов в хромосоме, т.е. изменяется группа сцепления. Концевых инверсий не бывает.
В гомозиготном состоянии инверсии летальны, в гетерозиготном состоянии они проявляются множественными пороками развития.
Выявление инверсий:
-
дифференциальное окрашивание.
-
фигура в виде двух противоположно расположенных петель в профазу мейоза 1.
Инверсии бывают 2 видов:
-
парацентрическая инверсия, которая не затрагивает центромеру, т.к. разрывы происходят в пределах одного плеча хромосомы
-
перицентрическая инверсия, которая затрагивает центромеру, т.к. разрывы происходят по обе стороны от центромеры.
При перицентрической инверсии может изменяться конфигурация хромосомы (если концы поворачиваемых участков не симметричны). А это делает невозможным в последующем конъюгацию.
Фенотипическое проявление инверсий наиболее мягкое по сравнению с другими хромосомными абберациями. Если рецессивные гомозиготы погибают, то у гетерозигот чаще всего наблюдается бесплодие.
Кольцевые хромосомы. В норме в кариотипе человека кольцевых хромосом нет. Они могут появляться при действии на организм мутагенных факторов, особенно радиоактивного облучения.
При этом в хромосоме происходит 2 разрыва, и образовавшийся участок замыкается в кольцо. Если кольцевая хромосома содержит центромеру, то образуется – центрическое кольцо. Если центромеры нет, то образуется – ацентрическое кольцо, оно разрушается ферментами и не наследуется.
Выявляются кольцевые хромосомы при кариотипировании.
В гомозиготном состоянии эти мутации летальны, а в гетерозиготном состоянии фенотипически проявляются, как делеции.
Кольцевые хромосомы являются маркерами радиоактивного облучения. Чем больше доза радиоактивного облучения, тем больше кольцевых хромосом, и тем хуже прогноз.
-
Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
Транслокация – это перемещение участка хромосомы. Бывают взаимные (реципрокные) и не взаимные (транспозиции) транслокации.
Реципрокные транслокации происходят в тех случаях, когда две негомологичные хромосомы обмениваются своими участками.
Особую группу транслокаций составляют робертсоновские транслокации (центрические слияния). Им подвергаются акроцентрические хромосомы – они теряют короткие плечи, а их длинные плечи соединяются.
Причина
4-5% случаев рождения ребёнка-дауника –
робертсоновские транслокации. При этом
происходит перемещение длинного плеча
21 хромосомы на одну из хромосом группы
D
(13, 14, 15, чаще вовлекается 14 хромосома).
Типы яйцеклеток сперматозоид зигота Последствия
14 + 14, 21 14,14,21 моносомия 21 (леталь)
14/21,21 + 14, 21 14/21,21,14,21 трисомия 21 (дауник)
21 + 14, 21 21,14,21, моносомия 14 (леталь)
14,14/21 + 14, 21 14,14/21,14,21 трисомия 14 (леталь)
14/21 + 14, 21 14/21,14,21 фенотипически здоров
Как видим, женщина с робертсоновской транслокацией может родить здорового ребенка.
Потеря коротких плеч не влияет ни на что, так как там находятся ядрышкообразующие зоны, а они есть и в других хромосомах.
У больного с транслокационной формой синдрома Дауна в клетках 46 хромосом. В яичнике после транслокации будет 45 хромосом. Однако при сбалансированной мутации у женщины будет 45 хромосом.
Выявление транслокаций:
-
дифференциальное окрашивание.
-
фигура креста в профазу мейоза 1.
-
Траспозиции. Мобильные генетические элементы. Механизмы перемещения по геному и значение.
Если транслокации не носят характера взаимности, то говорят о транспозиции.
Особую группу транспозонов составляют Мобильные Генетические Элементы (МГЭ), или прыгающие гены, которые обнаружены у всех организмов. У мушки дрозофилы они составляют 5% генома. У человека МГЭ объединяют в семейство ALU.
МГЭ состоят из 300- 400 нуклеотидов, повторяющихся в геноме у человека 300 тыс. раз.
На МГЭ концах находятся повторы нуклеотидов, состоящие при из 50-100 нуклеотидов. Повторы могут быть прямыми и обратными. Повторы нуклеотидов, по-видимому, влияют на перемещение МГЭ.
Выделяют два варианта перемещения МГЭ по геному.
1. с помощью процесса обратной транскрипции. Для этого необходим фермент обратная транскриптаза (ревертаза). Этот вариант протекает в несколько этапов:
-
на ДНК фермент РНК-полимераза (другое название – транскриптаза) синтезирует иРНК,
-
на иРНК фермент обратная транскриптаза синтезирует одну цепь ДНК,
-
фермент ДНК-полимераза обеспечивает синтез второй цепочки ДНК,
-
синтезированный фрагмент замыкается в кольцо,
-
кольцо ДНК встраивается в другую хромосому или в другое место этой же хромосомы.
2. с помощью фермента транспозазы, который вырезает МГЭ и переносит его в другую хромосому или в другое место этой же хромосомы
В ходе эволюции МГЭ играли положительную роль, т.к. они осуществляли перенос генетической информации от одних видов организмов к другим. Важную роль в этом играли ретровирусы, которые содержат в качестве наследственного материала РНК, а также содержат обратную транскриптазу.
МГЭ перемещаются по геному очень редко, одно перемещение на сотни тысяч событий в клетке (частота перемещений 1 х 10–5).
В каждом конкретном организме МГЭ положительной роли не играют, т.к. перемещаясь по геному, они изменяют работу генов, вызывают генные и хромосомные мутации.
-
Индуцированный мутагенез. Физические, химические и биологические мутагенные факторы.
Индуцированные мутации возникают при действии на организм мутагенных факторов, которые делятся на 3 группы:
-
Физические (УФЛ, рентгеновское и радиационное излучения, электромагнитные поля, высокие температуры).
Так ионизирующее излучение может действовать непосредственно на молекулы ДНК и РНК, вызывая в них повреждения (генные мутации). Косвенное воздействие этого
мутагена на наследственный аппарат клеток заключается в образовании генотоксических веществ (Н2О2, ОН-, О2-,).
-
Химические мутагенные факторы. Существует свыше 2 млн. химических веществ, способных вызывать мутации. Это соли тяжелых металлов, химические аналоги азотистых оснований (5-бромурацил), алкилирующие соединения (СН3, С2 Н5).
-
Биологические (вирусы, продукты жизнедеятельности паразитов, МГЭ).