
- •1. Клетка – элементарная генетическая и структурно-функциональная биологическая система.
- •2. Клеточная теория. Современное состояние клеточной теории.
- •6. Строение и функции оболочки животной эукариотической клетки.
- •7. Трансмембранный транспорт веществ в клетке.
- •8. Цитоплазма: основное вещество, цитоскелет, органеллы.
- •2. Наследственный аппарат клеток. Химическая и структурная организация хромосом.
- •6. Наследственный аппарат клеток человека. Кариотип человека, характеристика кариотипа в норме.
- •Механизмы регуляции митотической активности.
- •Половой диморфизм: генетический, морфофизиологический, эндокринный и поведенческий аспекты.
- •Партеногенез.
- •Общая характеристика половых клеток, или гамет.
- •7. Закон расщепления. Доминантность и рецессивность.
- •8. Закон чистоты гамет. Анализирующее скрещивание.
- •3 Части семян жёлтых морщинистых, 3 части семян – зелёных гладких и I часть семян – зелёных морщинистых.
- •Контролируемых генами х- и у-хромосом человека.
- •Линейное расположение генов в хромосомах. Генетические и цитологические карты хромосом.
- •Неаллельных генов в детерминации признаков.
- •Множественные аллели. Наследование групп крови по системе аво.
- •Комплементарность. Эффект положения.
- •Полимерия. Полигенное наследование как механизм наследования количественных признаков.
- •Количественная и качественная специфика проявления генов в признаках: пенетрантность, экспрессивность, поле действия гена, плейотропия, генокопии.
- •Перенос биологической информации на белок (трансляция). Структура, виды и роль рнк.
- •Гипотеза «один ген – один фермент», ее современная трактовка..
- •5. Регуляция экспрессии генов у прокариот и эукариот.
- •Генные мутации. Понятие о генных болезнях.
- •Антимутационные барьеры организма.
- •Репарация генетического материала. .
- •Генные болезни, механизмы их развития, наследования, частота возникновения.
- •1. Структурные мутации хромосом (хромосомные аберрации).
- •Дупликации, инверсии, кольцевые хром-мы. Механизм возникновения. Фенотипическое проявление.
- •Транслокации, их сущность. Реципрокные транслокации, их характеристика и медицинское значение. Робертсоновские транслокации и их роль в наследственной патологии.
- •Радиационные мутации. Генетическая опасность загрязнения окружающей среды.
- •Анеуплоидия.
- •4. Медико-генетическое консультирование.
- •5. Пренатальная диагностика:
6. Строение и функции оболочки животной эукариотической клетки.
Эукариотическая клетка отделена от внешней среды или соседних клеток плазматической мембраной, или плазмалеммой.
Среди многочисленных моделей мембран, наиболее универсальной оказалась так называемая "жидкостно-мозаичная" модель. Согласно ей основой мембраны является жидкостный билипидный слой, образованный строго ориентированными фосфолипидными молекулами. Двойной слой фосфолипидных молекул обращен друг к другу гидрофобными участками, а внешняя и внутренняя поверхности билипидного слоя образованы гидрофильными участками молекул. Белки, входящие в мембрану, не составляют сплошного слоя на внутренней и внешней поверхности билипидного слоя; они расположены мозаично и обладают способностью к перемещению в билипидном слое. Мембранные белки представлены тремя разновидностями:
-
периферические белки располагаются на поверхности билипидного слоя;
-
погружённые белки пронизывают всю толщу мембраны;
-
полупогружённые белки погружены в мембрану лишь наполовину, выступая наружу с какой-то одной (внешней или внутренней) поверхности мембраны.
Из этой модели организации мембраны вытекает важное следствие, а именно: возможность горизонтального и отчасти вертикального смещения
погружённых и полупогружённых белковых молекул, то есть подвижность такой системы.
Пронизывающие белки участвуют в транспорте веществ.
Полупогружённые белки, обращённые внутрь, выполняют регуляторные ф-и.
Полупогружённые белки, обращённые наружу, «узнают» поверхность соседних клеток; благодаря им формируются ткани и органы.
На плазмалемме животных клеток находится гликокаликс – соединение белков и полисахаридов. Он непосредственно связывает клетку с внешней средой и служит для распознавания сигналов, поступающих из неё. Он же связывает клетки в ткани. Образуется гликокаликс благодаря жизнедеятельности самих клеток.
Функции плазматической мембраны:
-
защитная или барьерная функция
-
обеспечение контактов между клетками
-
сигнальная (рецепторная) – на поверхности мембраны находятся рецепторы, которые воспринимают сигналы из внешней среды
-
транспортная – регулирует транспорт в-в, т. к. обладает избирательной проницаемостью.
7. Трансмембранный транспорт веществ в клетке.
Существует 5 способов поступления веществ в клетку: диффузия, облегчённая диффузия (пассивный транспорт), осмос, активный транспорт, эндоцитоз. Два последних способа сопровождаются затратами энергии.
Диффузия – перемещение вещества из области большей концентрации в область меньшей концентрации без затраты энергии. Движущей силой диффузии является градиент (разность) концентрации. Диффузия будет действовать до тех пор, пока концентрация вещества в двух областях не выровняется. Так перемещаются кислород, углекислый газ, глюкоза, аминокислоты, жирные кислоты, этанол, мочевина.
Облегчённая диффузия или пассивный транспорт. В этом случае молекула специального белка-переносчика соединяется с переносимой молекулой на одной стороне мембраны и «перетягивает» её на другую сторону мембраны. Перенос веществ в этом случае осуществляется также по градиенту концентрации и без затраты энергии. Так перемещаются сахара, аминокислоты, нуклеотиды и ионы.
Осмос – перемещение молекул воды через полупроницаемую мембрану, вызванное разностью концентрации. Клетка, помещённая в чистую воду, насасывает её по градиенту своей концентрации. Клетка, помещённая в насыщенный раствор, отдаёт воду и сморщивается. Например, эритроциты в гипотоническом растворе набухают и лопаются, а в гипертоническом – сморщиваются.
Активный транспорт – перемещение веществ против их градиентов концентрации, т.е. из области меньшей концентрации в область большей концентрации. На это требуется энергия, источником её служит АТФ. Этот способ характерен только для ионов питательных веществ, следовательно, клетка обладает избирательной способностью по отношению к различным ионам.
Эндоцитоз – перемещение веществ с помощью выростов и выпячиваний плазмалеммы. Эндоцитоз делится на фагоцитоз и пиноцитоз. Оба этих процесса требуют затраты энергии.
Фагоцитоз – захват выростами плазмалеммы крупных частиц, диаметром 1мм и более и втягивание их в цитоплазму клетки. Здесь происходит их ферментативное расщепление. Клетки, осуществляющие фагоцитоз, называются фагоцитами (нейтрофилы и макрофаги).
Пиноцитоз – поглощение пузырьков жидкости. В месте соприкосновения с пузырьком плазмалемма образует впячивание в виде канальца, который заполняется жидкостью. Затем он отшнуровывается и попадает в цитоплазму. Пиноцитоз характерен для лейкоцитов, клеток зародыша и печени. Путём пиноцитоза поглощаются крупные молекулы и ионы, не способные проникать через поры плазмалеммы.
Из клетки во внешнюю среду вещества поступают с помощью экзоцитоза. Так из секреторных клеток, через их мембрану, выводятся пищеварительные ферменты или гормоны, а из пищеварительных вакуолей – непереваренные плотные частицы.