
- •1. Кинематическое описание движения (формулы для описания поступательного и вращательного движения).
- •Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.
- •Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.
- •Ускорение при движении тела по окружности с постоянной по модулю скоростью (центростремительное ускорение)
- •2. Законы Ньютона для поступательного и вращательного движения.
- •Поэтому форма записи второго закона Ньютона для прямолинейной формы движения с учетом сказанного должна выглядеть иначе, а именно:
- •При неравномерном вращении тела запись второго закона Ньютона должна выглядеть так:
- •3. Постулаты специальной теории относительности и геометрия пространства времени.
- •4. Фундаментальные взаимодействия. Участники взаимодействия, переносчики взаимодействия, радиус взаимодействия, время взаимодействия.
- •5. Силы тяготения и электрические силы. Какие силовые поля называются потенциальными?
- •6. Силы упругости. Деформации, их виды.
- •7. Закон Гука и модуль Юнга.
- •8. Силы трения. Виды трения. Трение покоя. (График зависимости силы трения от величины внешней силы). Внутреннее трение, формула Стокса.
- •9. Закон сохранения импульса как фундаментальный закон природы.
- •10. Центр масс системы. Вычисление скорости центра масс.
- •12. Работа и кинетическая энергия. Мощность.
- •13. Закон сохранения полной механической энергии.
- •14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.
- •15. Уравнение движения и условия равновесия твердого тела.
- •16. Закон сохранения момента импульса. Кинетическая энергия вращения.
- •17.Формула ньютона для сил внутреннего трения. Коэффициент вязкости.
- •18. Колебания
- •Дифференциальное уравнение гармонических колебаний и его решение.
- •Получим
- •22. Амплитуда и фаза при вынужденных колебаниях. Резонансные кривые.
- •24. Поляризация волн. Три вектора, определяющих электромагнитную волну. Световой вектор. Виды поляризации.
- •25. Закон Брюстера.
- •30 Эффект Максвелла для поляризованного света.
- •31 Точечный источник волн. Плоская и сферическая волна.
- •32 Фазовая скорость волны. Длина волны, волновое число. Групповая скорость.
- •33 Когерентность, время когерентности, длина когерентности.
- •34 Интерференция плоских волн условия возникновения и наблюдения интерференционного максимума и минимума.
- •35. Интерференция в тонких пленках. Просветление оптики.
- •36. Полосы равного наклона.
- •37. Полосы равной толщины.
- •38. Изменение фазы волны при отражении от границы раздела двух сред.
- •39. Принцип Гюйгенса-Френеля.
- •40. Дифракция на круглом отверстии.
- •40. Дифракция на круглом отверстии.(это объяснение из учебника)
- •41. Дифракция Фраунгофера. Дифракционная решетка.
- •42. Условия возникновения дифракционного максимума и минимума.
- •43. Дифракция Фраунгофера и спектральное разложение. Разрешающая способность и дисперсия дифракционной решетки.
- •44.Дифракционные и дисперсионные спектры, их отличия.
- •45. Внешний фотоэффект. Законы Столетова.
- •46. Вольт-амперная характеристика фотоэлемента, ток насыщения и запирающее напряжение (от каких параметров они зависят).
- •47. Работа выхода при внешнем фотоэффекте, красная граница фотоэффекта.
- •48. Модели атома Томсона и Резерфорда.
- •49. Модель атома Бора, противоречия данной теории, все достоинства и недостатки.
- •50. Гипотеза де Бройля, свойства волн де Бройля.
- •51. Волновые свойства материи. Соотношения неопределенности Гейзенберга.
- •52. Гипотеза Борна, волновая функция. Весь ответ неправильный
- •53. Принцип неразличимости микрочастиц. Бозоны и фермионы.
- •56. Энергетическая диаграмма водородоподобного атома. Формула Ридберга.
- •57. Состав атомного ядра. Нуклоны.
- •58. Изотопы, изобары, изомеры
- •59. Дефект массы атомного ядра. Основы ядерной энергетики.
- •60. Закон радиоактивного распада в интегральной и дифференциальной форме.
- •Е м61. Закон Бугера
- •62. Характеристики излучения
- •63.Траектории движения α, β, γ излучения в электрическом, магнитном и гравитационном полях.
- •64. Способы регистрации радиоактивного излучения. Счетчик Гейгера и Камера Вильсона.
56. Энергетическая диаграмма водородоподобного атома. Формула Ридберга.
56. Атомы, содержащие один внешний электрон называются водородоподобными.
Формула Ридберга для водорода:
где Лямбда — длина волны электромагнитного излучения, испущенного в вакуум;
Rбеск. — постоянная Ридберга;
n1 и n2 — целые числа, такие, что n1 < n2.;
Принимая n1 равным 1, и полагая, что n2 может быть 2 и до бесконечности, получаем спектральные линии, известные как серия Лаймана. Аналогично получаем остальные серии.
Формула Ридберга для любого водородоподобного атома:
где ЛямбдаVAC - длина волны света, испускаемого в вакуум;
R - постоянная Ридберга для данного хим. элемента;
Z - порядковый номер элемента в таблице, заряд атома
n1 и n2 — целые числа, такие, что n1 < n2
57. Состав атомного ядра. Нуклоны.
Ядро атома состоит из нуклонов, которые подразделяются на протоны и нейтроны. Протон - положительно заряженная элементарная частица, нейтрон - нейтральная. А = N + Z, где N - число нейтронов в ядре, а Z - число протонов. Число А носит название атомной массы, а Z - атомного номера.
58. Изотопы, изобары, изомеры
Ядра
с одинаковыми Z,
но разными А
(т. е. с разными числами нейтронов N=A–Z)
называются изотопами,
а ядра с одинаковыми А,
но разными Z—изобарами.
Например, водород (Z=1)
имеет три изотопа:
—протий
(Z=1,
N=0),
—дейтерий
(Z=1,
N=1),
— тритий (Z=1,
N=2),
олово—десять, и т. д. В подавляющем
большинстве случаев изотопы одного и
того же химического элемента обладают
одинаковыми химическими и почти
одинаковыми физическими свойствами
(исключение составляют, например, изотопы
водорода), определяющимися в основном
структурой электронных оболочек, которая
является одинаковой для всех изотопов
данного элемента. Примером ядер-изобар
могут служить ядра
.
В настоящее время известно более 2500
ядер, отличающихся либоZ,
либо А,
либо тем и другим.
Изомеры – это вещества, имеющие одинаковый качественный и количественный состав, но различное строение и, следовательно, разные свойства
59. Дефект массы атомного ядра. Основы ядерной энергетики.
Величина
называется дефектом массыядра. На эту величину уменьшается масса всех нуклонов при образовании из них атомного ядра.
Большое значение в ядерной энергетике приобретает не только осуществление цепной реакции деления, но и управление ею. Устройства, в которых осуществляется и поддерживается управляемая цепная реакция деления, называются ядерными реакторами.
Ядерный реактор является мощным источником проникающей радиации (нейтроны, y-излучение), примерно в 1011 раз превышающей санитарные нормы. Поэтому любой реактор имеет биологическую защиту — систему экранов из защитных материалов (например, бетон, свинец, вода), располагающуюся за его отражателем, и пульт дистанционного управления.
Ядерные реакторы различаются:
1) по характеру основных материалов, находящихся в активной зоне (ядерное топливо, замедлитель,теплоноситель);
2) по характеру размещения ядерного топлива и замедлителя в активной зоне: гомогенные (оба вещества равномерно смешаны друг с другом) и гетерогенные (оба вещества располагаются порознь в виде блоков);
3) по энергии нейтронов (реакторы на тепловых и быстрых нейтронах; в последних используются нейтроны деления и замедлитель вообще отсутствует);
4) по типу режима (непрерывные и импульсные);
5) по назначению (энергетические, исследовательские, реакторы по производству новых делящихся материалов, радиоактивных изотопов и т. д.).
Среди ядерных реакторов особое место занимают энергетические реакторы-размножители. В них наряду с выработкой электроэнергии идет процесс воспроизводства ядерного горючего