Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика экзамен 1.docx
Скачиваний:
518
Добавлен:
13.06.2017
Размер:
1.89 Mб
Скачать

53. Принцип неразличимости микрочастиц. Бозоны и фермионы.

Если перейти от рассмотрения движения одной микрочастицы (одного электрона) к многоэлектронным системам, то проявляются особые свойства, не имеющие аналога в классической физике. Пусть квантово-механическая система состоит из одинаковых частиц, например электронов. Все электроны имеют одинаковые физические свойства — массу, электрический заряд, спин и другие внутренние характеристики (например, квантовые числа). Такие частицы называют тождественными.

Необычные свойства системы одинаковых тождественных частиц проявляются в фундаментальном принципе квантовой механики — принципе неразличимости тождественных частиц, согласно которому невозможно экспериментально различить тож­дественные частицы.

В классической механике даже одинаковые частицы можно различить по положению в пространстве и импульсам. Если частицы в какой-то момент времени пронуме­ровать, то в следующие моменты времени можно проследить за траекторией любой из них. Классические частицы, таким образом, обладают индивидуальностью, поэтому классическая механика систем из одинаковых частиц принципиально не отличается от классической механики систем из различных частиц.

В квантовой механике положение иное. Из соотношения неопределенностей вытека­ет, что для микрочастиц вообще неприменимо понятие траектории; состояние микроча­стицы описывается волновой функцией, позволяющей вычислять лишь вероятность нахождения микрочастицы в окрестностях той или иной точки пространства. Если же волновые функции двух тождественных частиц в пространстве перекрываются, то разговор о том, какая частица находится в данной области, вообще лишен смысла: можно лишь говорить о вероятности нахождения в данной области одной из тождест­венных частиц. Таким образом, в квантовой механике тождественные частицы полно­стью теряют свою индивидуальность и становятся неразличимыми. Следует подчерк­нуть, что принцип неразличимости тождественных частиц не является просто следстви­ем вероятностной интерпретации волновой функции, а вводится в квантовую механику как новый принцип, который, как уже указывалось, является фундаментальным.

Принимая во внимание физический смысл величины , принцип неразличимости тождественных частиц можно записать в виде

(246)

где х1, х2 – соответственно совокупность пространственных и спиновых координат первой и второй частиц. Из выражения (246) вытекает, что возможны два случая:

т. е. принцип неразличимости тождественных частиц ведет к определенному свойству симметрии волновой функции. Если при перемене частиц местами волновая функция не меняет знака, то она называется симметричной, если меняет — антисимметричной. Изменение знака волновой функции не означает изменения состояния, так как физичес­кий смысл имеет лишь квадрат модуля волновой функции. В квантовой механике доказывается, что характер симметрии волновой функции не меняется со временем. Это же является доказательством того, что свойство симметрии или антисиммет­рии — признак данного типа микрочастиц.

Установлено, что симметрия или антисимметрия волновых функций определяется спином частиц. В зависимости от характера симметрии все элементарные частицы и построенные из них системы (атомы, молекулы) делятся на два класса. Частицы с полуцелым спином (например, электроны, протоны, нейтроны) описываются ан­тисимметричными волновыми функциями и подчиняются статистике Ферми — Дира­ка; эти частицы называются фермионами. Частицы с нулевым или целочисленным спином (например, p-мезоны, фотоны) описываются симметричными волновыми функ­циями и подчиняются статистике Бозе - Эйнштейна; эти частицы называются бозона­ми. Сложные частицы (например, атомные ядра), составленные из нечетного числа фермионов, являются фермионами (суммарный спин — полуцелый), а из четно­го — бозонами (суммарный спин целый).

55. Характеристики квантовых чисел. Правила отбора.

Первое квантовое число n называется главным квантовым числом, оно может принимать целые значения от 1 до бесконечности. В атоме водорода это число характеризует энергию электрона (в атомных единицах):

Е(n) = -ZR/(2∙n2),

где Z – заряд ядра, R=109678,76 см-1– постоянная Ридберга.

Второе квантовое число l называется орбитальным числом. При определенном значении n оно может принимать целые значения от 0 до (n-1). Число l определяет одно из возможных значений орбитального момента количества движения электрона в атоме. Число l определяет форму орбитали. Каждому значению l сопоставляют букву (спектроскопические обозначения):

При обозначении состояния электрона (или орбитали) главное квантовое число пишут перед символом орбитального квантового числа в виде формулы: nl. Например:

4s означает электрон, у которого n=4 и l=0, т.е. электронное облако имеет форму шара;

2p означает электрон, у которого n=2и l=1 (электронное облако имеет форму гантели) и т.д.

Третье квантовое числоml характеризует пространственне расположение орбиталей. Оно называется магнитным квантовым числом и определяет величину проекции орбитального момента количества движения на выделенное направление (обычно ось z). mlпринимает целые значения от –l до +l. Число различных значений ml при определенном значении l равно N=(2l+1).

s-cостоянию электрона отвечает одна орбиталь

p-cостоянию электрона отвечает три орбитали

d-cостоянию электрона отвечает пять орбиталей

f-cостоянию электрона отвечает семь орбиталей

Таким образом орбиталь характеризуется определенным набором трех квантовых чисел: n, l, m.

Общее число орбиталей данного энергетического уровня равноN=n2.

Отбора правила, правила, определяющие возможные квантовые переходы для атомов, молекул, атомных ядер, взаимодействующих элементарных частиц и др. О. п. устанавливают, какие квантовые переходы разрешены (вероятность перехода велика) и какие запрещены — строго (вероятность перехода равна нулю) или приближённо (вероятность перехода мала); соответственно О. п. разделяют на строгие и приближённые. При характеристике состояний системы с помощью квантовых чисел О. п. определяют возможные изменения этих чисел при переходе рассматриваемого типа.

Правила отбора – правила, которые на основе законов сохранения квантовых чисел устанавливают допустимые процессы с участием микросистем (молекул, атомов, ядер, элементарных частиц). Любая микросистема характеризуется определённым набором квантовых чисел. В изолированном состоянии эти квантовые числа у микросистемы остаются неизменными, поскольку являются проявлением соответствующих законов сохранения. Так электрический заряд или полный угловой момент (момент количества движения) изолированной системы не изменяются, так как существуют законы сохранения электрического заряда и углового момента.

В нагретом до высокой температуры водороде можно наблюдать характерный линейчатый спектр. Все спектральные линии группируются в серии в зависимости от того, на какой энергетический уровень переходят электроны.

Переходы в первые возбужденные состояния на второй энергетический уровень с верхних уровней образуют серию Бальмера (n = 2), при переходе на первый энергетический уровень с n = 1 образуют серию Лаймана.