
- •1. Кинематическое описание движения (формулы для описания поступательного и вращательного движения).
- •Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.
- •Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.
- •Ускорение при движении тела по окружности с постоянной по модулю скоростью (центростремительное ускорение)
- •2. Законы Ньютона для поступательного и вращательного движения.
- •Поэтому форма записи второго закона Ньютона для прямолинейной формы движения с учетом сказанного должна выглядеть иначе, а именно:
- •При неравномерном вращении тела запись второго закона Ньютона должна выглядеть так:
- •3. Постулаты специальной теории относительности и геометрия пространства времени.
- •4. Фундаментальные взаимодействия. Участники взаимодействия, переносчики взаимодействия, радиус взаимодействия, время взаимодействия.
- •5. Силы тяготения и электрические силы. Какие силовые поля называются потенциальными?
- •6. Силы упругости. Деформации, их виды.
- •7. Закон Гука и модуль Юнга.
- •8. Силы трения. Виды трения. Трение покоя. (График зависимости силы трения от величины внешней силы). Внутреннее трение, формула Стокса.
- •9. Закон сохранения импульса как фундаментальный закон природы.
- •10. Центр масс системы. Вычисление скорости центра масс.
- •12. Работа и кинетическая энергия. Мощность.
- •13. Закон сохранения полной механической энергии.
- •14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.
- •15. Уравнение движения и условия равновесия твердого тела.
- •16. Закон сохранения момента импульса. Кинетическая энергия вращения.
- •17.Формула ньютона для сил внутреннего трения. Коэффициент вязкости.
- •18. Колебания
- •Дифференциальное уравнение гармонических колебаний и его решение.
- •Получим
- •22. Амплитуда и фаза при вынужденных колебаниях. Резонансные кривые.
- •24. Поляризация волн. Три вектора, определяющих электромагнитную волну. Световой вектор. Виды поляризации.
- •25. Закон Брюстера.
- •30 Эффект Максвелла для поляризованного света.
- •31 Точечный источник волн. Плоская и сферическая волна.
- •32 Фазовая скорость волны. Длина волны, волновое число. Групповая скорость.
- •33 Когерентность, время когерентности, длина когерентности.
- •34 Интерференция плоских волн условия возникновения и наблюдения интерференционного максимума и минимума.
- •35. Интерференция в тонких пленках. Просветление оптики.
- •36. Полосы равного наклона.
- •37. Полосы равной толщины.
- •38. Изменение фазы волны при отражении от границы раздела двух сред.
- •39. Принцип Гюйгенса-Френеля.
- •40. Дифракция на круглом отверстии.
- •40. Дифракция на круглом отверстии.(это объяснение из учебника)
- •41. Дифракция Фраунгофера. Дифракционная решетка.
- •42. Условия возникновения дифракционного максимума и минимума.
- •43. Дифракция Фраунгофера и спектральное разложение. Разрешающая способность и дисперсия дифракционной решетки.
- •44.Дифракционные и дисперсионные спектры, их отличия.
- •45. Внешний фотоэффект. Законы Столетова.
- •46. Вольт-амперная характеристика фотоэлемента, ток насыщения и запирающее напряжение (от каких параметров они зависят).
- •47. Работа выхода при внешнем фотоэффекте, красная граница фотоэффекта.
- •48. Модели атома Томсона и Резерфорда.
- •49. Модель атома Бора, противоречия данной теории, все достоинства и недостатки.
- •50. Гипотеза де Бройля, свойства волн де Бройля.
- •51. Волновые свойства материи. Соотношения неопределенности Гейзенберга.
- •52. Гипотеза Борна, волновая функция. Весь ответ неправильный
- •53. Принцип неразличимости микрочастиц. Бозоны и фермионы.
- •56. Энергетическая диаграмма водородоподобного атома. Формула Ридберга.
- •57. Состав атомного ядра. Нуклоны.
- •58. Изотопы, изобары, изомеры
- •59. Дефект массы атомного ядра. Основы ядерной энергетики.
- •60. Закон радиоактивного распада в интегральной и дифференциальной форме.
- •Е м61. Закон Бугера
- •62. Характеристики излучения
- •63.Траектории движения α, β, γ излучения в электрическом, магнитном и гравитационном полях.
- •64. Способы регистрации радиоактивного излучения. Счетчик Гейгера и Камера Вильсона.
46. Вольт-амперная характеристика фотоэлемента, ток насыщения и запирающее напряжение (от каких параметров они зависят).
Вольт-амперная характеристика фотоэлемента – зависимость фототока I, образуемого потоком электронов, испускаемых катодом под действием света, от напряжения U между электродами.
Вольт-амперная характеристика, соответствующая двум различным освещенностям катода( частота света в обоих случаях одинакова), приведена на рисунке выше. По мере увеличения U фототок постепенно возрастает, т.е. все большее число фотоэлектронов достигает анода. Пологий характер кривых показывает, что электроны вылетают из катода с различными скоростями. Максимальное значение тока - фототок насыщения - определяется таким значением U, при котором все электроны, испускаемые катодом, достигают анода:
Где n – число электронов, испускаемых катодом за 1 с.
Из вольт-амперной характеристики следует, что при U = 0 фототок не исчезает. Следовательно, электроны, выбитые светом из катода, обладают некоторой начальной скоростью v, а значит, и отличной от нуля кинетической энергией и могут достигнуть анода без внешнего поля. Для того чтобы фототок стал равным пулю, необходимо приложить задерживающее напряжение U0. При U = U0 ни один из электронов, даже обладающий при вылете из катода максимальной скоростью vmax, не может преодолеть задерживающего поля и достигнуть анода. Следовательно,
Т.е., измерив задерживающее напряжение U0, можно определить максимальные значения скорости кинетической энергии фотоэлектронов.
Экспериментально показано, что задерживающий потенциал зависит от частоты света, которым облучают катод фотоэлемента, и не зависит от величины падающего светового потока. При увеличении частоты облучающего света задерживающий потенциал возрастает
Зависимость
силы фототока от приложенной разности
потенциалов при освещении катода светом
различной частоты при одинаковом числе
вырванных электронов (v2>
v1>
v0)
На опыте обнаружено, что кинетическая энергия вырываемых светом электронов зависит только от частоты падающего света и не зависит от величины светового потока. Если частота света меньше определенной для данного вещества минимальной частоты v0, то фотоэффекта не происходит. Частоту v0 называют красной границей фотоэффекта. Задерживающий потенциал, соответствующий красной границе фотоэффекта, равен нулю.
Краткий итог: фототок насыщения зависит только от интенсивности, а запирающее напряжение U0 зависит от кинетической энергии вырываемых светом электронов, в свою очередь кинетическая энергия зависит только от частоты света.
47. Работа выхода при внешнем фотоэффекте, красная граница фотоэффекта.
По Эйнштейну, каждый квант поглощается только одним электроном. Поэтому число вырванных фотоэлектронов должно быть пропорционально интенсивности света (I закон фотоэффекта). Безынерционность фотоэффекта объясняется тем, что передача энергии при столкновении фотона с электроном происходит почти мгновенно.
Энергия падающего фотона расходуется на совершение электроном работы выхода А из металла и на сообщение вылетевшему фотоэлектрону кинетической энергии . По закону сохранения энергии,
(1)
Уравнение (1) называется уравнением Эйнштейна для внешнего фотоэффекта.
Уравнение Эйнштейна позволяет объяснить II и III законы фотоэффекта. Из (1) непосредственно следует, что максимальная кинетическая энергия фотоэлектрона линейно растет с увеличением частоты падающего излучения и не зависит от его интенсивности (числа фотонов), так как ни A, ни v от интенсивности света не зависят (II закон фотоэффекта). Так как с уменьшением частоты света кинетическая энергия фотоэлектронов уменьшается (для данного металла А=const), то при некоторой достаточно малой частоте v = v0 кинетическая энергия фотоэлектронов станет равной нулю и фотоэффект прекратится (III закон фотоэффекта). Согласно изложенному, из (1) получим, что
(2)
и есть красная граница фотоэффекта для данного металла. Она зависит лишь от работы выхода электрона, т.е. от химической природы вещества и состояния его поверхности. Выражение (1) можно записать в виде
hv = hv0 + eU0