
- •1. Кинематическое описание движения (формулы для описания поступательного и вращательного движения).
- •Поступательным называется такое движение твердого тела, при котором любая прямая, проведенная в этом теле, перемещается, оставаясь параллельной своему начальному направлению.
- •Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.
- •Ускорение при движении тела по окружности с постоянной по модулю скоростью (центростремительное ускорение)
- •2. Законы Ньютона для поступательного и вращательного движения.
- •Поэтому форма записи второго закона Ньютона для прямолинейной формы движения с учетом сказанного должна выглядеть иначе, а именно:
- •При неравномерном вращении тела запись второго закона Ньютона должна выглядеть так:
- •3. Постулаты специальной теории относительности и геометрия пространства времени.
- •4. Фундаментальные взаимодействия. Участники взаимодействия, переносчики взаимодействия, радиус взаимодействия, время взаимодействия.
- •5. Силы тяготения и электрические силы. Какие силовые поля называются потенциальными?
- •6. Силы упругости. Деформации, их виды.
- •7. Закон Гука и модуль Юнга.
- •8. Силы трения. Виды трения. Трение покоя. (График зависимости силы трения от величины внешней силы). Внутреннее трение, формула Стокса.
- •9. Закон сохранения импульса как фундаментальный закон природы.
- •10. Центр масс системы. Вычисление скорости центра масс.
- •12. Работа и кинетическая энергия. Мощность.
- •13. Закон сохранения полной механической энергии.
- •14. Момент инерции твердого тела. Момент импульса. Теорема Штейнера.
- •15. Уравнение движения и условия равновесия твердого тела.
- •16. Закон сохранения момента импульса. Кинетическая энергия вращения.
- •17.Формула ньютона для сил внутреннего трения. Коэффициент вязкости.
- •18. Колебания
- •Дифференциальное уравнение гармонических колебаний и его решение.
- •Получим
- •22. Амплитуда и фаза при вынужденных колебаниях. Резонансные кривые.
- •24. Поляризация волн. Три вектора, определяющих электромагнитную волну. Световой вектор. Виды поляризации.
- •25. Закон Брюстера.
- •30 Эффект Максвелла для поляризованного света.
- •31 Точечный источник волн. Плоская и сферическая волна.
- •32 Фазовая скорость волны. Длина волны, волновое число. Групповая скорость.
- •33 Когерентность, время когерентности, длина когерентности.
- •34 Интерференция плоских волн условия возникновения и наблюдения интерференционного максимума и минимума.
- •35. Интерференция в тонких пленках. Просветление оптики.
- •36. Полосы равного наклона.
- •37. Полосы равной толщины.
- •38. Изменение фазы волны при отражении от границы раздела двух сред.
- •39. Принцип Гюйгенса-Френеля.
- •40. Дифракция на круглом отверстии.
- •40. Дифракция на круглом отверстии.(это объяснение из учебника)
- •41. Дифракция Фраунгофера. Дифракционная решетка.
- •42. Условия возникновения дифракционного максимума и минимума.
- •43. Дифракция Фраунгофера и спектральное разложение. Разрешающая способность и дисперсия дифракционной решетки.
- •44.Дифракционные и дисперсионные спектры, их отличия.
- •45. Внешний фотоэффект. Законы Столетова.
- •46. Вольт-амперная характеристика фотоэлемента, ток насыщения и запирающее напряжение (от каких параметров они зависят).
- •47. Работа выхода при внешнем фотоэффекте, красная граница фотоэффекта.
- •48. Модели атома Томсона и Резерфорда.
- •49. Модель атома Бора, противоречия данной теории, все достоинства и недостатки.
- •50. Гипотеза де Бройля, свойства волн де Бройля.
- •51. Волновые свойства материи. Соотношения неопределенности Гейзенберга.
- •52. Гипотеза Борна, волновая функция. Весь ответ неправильный
- •53. Принцип неразличимости микрочастиц. Бозоны и фермионы.
- •56. Энергетическая диаграмма водородоподобного атома. Формула Ридберга.
- •57. Состав атомного ядра. Нуклоны.
- •58. Изотопы, изобары, изомеры
- •59. Дефект массы атомного ядра. Основы ядерной энергетики.
- •60. Закон радиоактивного распада в интегральной и дифференциальной форме.
- •Е м61. Закон Бугера
- •62. Характеристики излучения
- •63.Траектории движения α, β, γ излучения в электрическом, магнитном и гравитационном полях.
- •64. Способы регистрации радиоактивного излучения. Счетчик Гейгера и Камера Вильсона.
35. Интерференция в тонких пленках. Просветление оптики.
Интерференция в тонкой плёнке происходит, когда падающие световые волны, отраженные от верхней и нижней границы тонкой пленки, интерферируют друг с другом, формируя новую волну. Тонкая пленка представляет собой слой материала толщиной в диапазоне от субнанометрового до микронного. Когда свет падает на поверхность пленки, он либо проходит насквозь, либо отражается от верхней поверхности. Свет, который проходит через верхнюю границу, достигает нижнюю поверхность и может вновь быть преломлен или отражён.
Просветле́ние о́птики — это нанесение на поверхность линз, граничащих с воздухом, тончайшей плёнки или нескольких слоев плёнок один поверх другого. Это позволяет увеличить светопропускание оптической системы и повысить контрастность изображения за счёт подавления бликов. Величи́ны показателей преломления чередуются по величине и подбираются таким образом, чтобы за счёт интерференции уменьшить (или совсем устранить) нежелательное отражение.
36. Полосы равного наклона.
Интерференционные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного наклона.
Лучи 1' и 1", отразившиеся от верхней и нижней граней пластинки, параллельны друг другу, так как пластинка плоскопараллельна. Следовательно, интерферирующие лучи 1' и 1' ' «пересекаются» только в бесконечности, поэтому говорят, что полосы равного наклона локализованы в бесконечности. Для их наблюдения используют собирающую линзу и экран (Э), расположенный в фокальной плоскости линзы.
37. Полосы равной толщины.
Для достаточно тонкой пластинки или пленки (поверхности которой не обязательно должны быть параллельными и вообще плоскими) можно наблюдать интерференционную картину, локализованную вблизи отражающей поверхности. Интерференционные полосы, возникающие в результате интерференции от мест одинаковой толщины, называются полосами равной толщины. В белом свете интерференционные полосы окрашены. Поэтому такое явление называют цветами тонких пленок. Его легко наблюдать на мыльных пузырях, на тонких пленках масла или бензина, плавающих на поверхности воды, на пленках окислов, возникающих на поверхности металлов при закалке, и т.п.
Кольца Ньютона - пример полос равной толщины. Они наблюдаются при отражении света. От соприкасающихся друг с другом плоско параллельной толстой стеклянной пластинки и плоско выпуклой линзы с большим радиусом кривизны. Роль тонкой пленки переменной толщины b, от поверхности которой отражаются когерентные волны, играет зазор между пластинкой и линзой.
38. Изменение фазы волны при отражении от границы раздела двух сред.
при отражении от более плотной фаза волны изменится на п
при отражении от менее плотной не изменится
39. Принцип Гюйгенса-Френеля.
Согласно принципу Гюйгенса каждая точка пространства, до которой доходит волна, служит центром вторичных волн, огибающая которых задает положение волнового фронта в следующий момент времени.
Волновой фронт − геометрическое место точек, до которых доходят колебания к моменту времени t.
Принцип Гюйгенса решает лишь задачу о направлении распространения волнового фронта, но не затрагивает вопроса об амплитуде, (интенсивности) волн, распространяющихся по разным направлениям. Френель вложил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.