- •Nucleotides as metabolic regulators
- •ATP is not quite what it seems
- •GTP-binding proteins, G proteins, or GTPases
- •G proteins
- •The GTPase cycle: a monostable switch
- •Switching off activity: switching on GTPase
- •The G protein receptor kinase family
- •Receptor mechanisms obviating G proteins
- •Monomeric GTP-binding proteins
- •Ras proteins discovered as oncogene products
- •Subfamilies of Ras
- •Structure
- •Post-translational modifications
- •GTPases everywhere!
- •Mutations of Ras that promote cancer
- •Functions of Ras
- •RasGAPs
- •RasGAP
- •Mechanism of GTPase activation
- •Guanine nucleotide exchange factors (GEFs)
- •Essay: Activation of G proteins without subunit unit dissociation
- •Pheromone-induced mating response in yeast
- •Monitoring subunit interactions in living cells by FRET
- •References
Signal Transduction
References
1. Rodbell M, Birnbaumer L, Pohl SL, Krans HM. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver: An obligatory role of guanylnucleotides in glucagon action. J Biol Chem. 1971;246:1877–1882.
2. Rodbell M, Krans HM, Pohl SL, Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver: Effects
of guanylnucleotides on binding of 125I-glucagon. J Biol Chem. 1971;246:1872–1876.
3. Maguire ME, Van Arsdale PM, Gilman AG. An agonist-specific effect of guanine nucleotides on binding to the -adrenergic receptor. Mol Pharmacol. 1976;12:335–339.
4. Lefkowitz RJ, Mullikin D, Caron MG. Regulation of -adrenergic receptors by guanyl-5’-yl imidodiphosphate and other purine nucleotides. J Biol Chem. 1976;251:4686–4692.
5. Rodbell M. Nobel Lecture. Signal transduction: evolution of an idea. Biosci Rep. 1995;15:117–133.
6. Bourne HR. GTPases everywhere! In: Dickey BF, Birnbaumer L, eds. Berlin: Springer Verlag; 1993:3–15. GTPases in Biology; Vol. 1.
7. Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348:125–132.
8. Wall MA, Coleman DE, Lee E, et al. The structure of the G protein heterotrimer Gi 1 1 2. Cell. 1995;83:1047–1058.
9. Levitzki A. From epinephrine to cyclic AMP. Science. 1988;241:800–806.
10.Gilman AG. G proteins and dual control of adenylate cyclase. Cell. 1984;36:577–579.
11.Arad H, Rosenbusch JP, Levitzki A. Stimulatory GTP regulatory unit Ns and the catalytic unit of adenylate cyclase are tightly associated: mechanistic consequences. Proc Natl Acad Sci U S A. 1984;81:6579–6583.
12.Klein S, Reuveni H, Levitzki A. Signal transduction by a nondissociable heterotrimeric yeast G protein. Proc Natl Acad Sci U S A. 2000;97:3219–3233.
13.Arad H, Levitzki A. The mechanism of partial agonism in the -receptor dependent adenylate cyclase of turkey erythrocytes. Mol Pharmacol. 1979;16:749–756.
14.Liebman PA, Parker KR, Dratz EA. The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment. Annu Rev Physiol. 1987;49:765–791.
15.Arshavsky VY, Dumke CL, Zhu Y, et al. Regulation of transducin GTPase activity in bovine rod outer segments. J Biol Chem. 1994;269:19882– 19887.
16.He W, Cowan CW, Wensel TG. RGS9, a GTPase accelerator for phototransduction. Neuron. 1998;20:95–102.
120
GTP-Binding Proteins and Signal Transduction
17.Biddlecombe GH, Berstein G, Ross EM, et al. Regulation of phospholipase C- 1 by Gq and m1 muscarinic receptor. J Biol Chem. 1996;271:7999–8007.
18.Chidiac P, Ross EM. Phospholipase C- 1 directly accelerates GTP hydrolysis by G q and acceleration is inhibited by G subunits. J Biol Chem. 1999;274:19639–19643.
19.de Vries L, Farquhar MG. RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol. 1999;9:138–144.
20.Schiff ML, Siderovski DP, Jordan JD, et al. Tyrosine-kinase-dependent recruitment of RGS12 to the N-type calcium channel. Nature. 2000;408:723–727.
21.Rodbell M, Krans HM, Pohl SL, Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver: Binding of glucagon: method of assay and specificity. J Biol Chem. 1971;246:1861–1871.
22.Cassel D, Selinger Z. Catecholamine-stimulated GTPase activity in turkey erythrocyte membranes. Biochim Biophys Acta. 1976;452:538–551.
23.Burgisser E, De Lean A, Lefkowitz RJ. Reciprocal modulation of agonist and antagonist binding to muscarinic cholinergic receptor by guanine nucleotide. Proc Natl Acad Sci U S A. 1982;79:1732–1736.
24.Green RD. Reciprocal modulation of agonist and antagonist binding to inhibitory adenosine receptors by 5’-guanylylimidodiphosphate and monovalent cations. J Neurosci. 1984;4:2472–2476.
25.Westphal RS, Sanders Bush E. Reciprocal binding properties of 5- hydroxytryptamine type 2C receptor agonists and inverse agonists. Mol Pharmacol. 1994;46:937–942.
26.Sundaram H, Newman Tancredi A, Strange PG. Characterization of recombinant human serotonin 5HT1A receptors expressed in Chinese hamster ovary cells. [3H]spiperone discriminates between the G-protein-coupled and -uncoupled forms. Biochem Pharmacol. 1993;45:1003–1009.
27.Grazzini E, Guillon G, Mouillac B, Zingg HH. Inhibition of oxytocin receptor function by direct binding of progesterone. Nature. 1998;392:509–512.
28.Haga T, Ross EM, Anderson HJ, Gilman AG. Adenylate cyclase permanently uncoupled from hormone receptors in a novel variant of S49 mouse lymphoma cells. Proc Natl Acad Sci U S A. 1977;74:2016–2020.
29.Coffino P, Bourne HR, Tomkins GM. Mechanism of lymphoma cell death induced by cyclic AMP. Am J Pathol. 1975;81:199–204.
30.Bourne HR, Coffino P, Tomkins GM. Somatic genetic analysis of cyclic AMP action: characterization of unresponsive mutants. J Cell Physiol. 1975;85:611–620.
31.Bourne HR, Coffino P, Tomkins GM. Selection of a variant lymphoma cell deficient in adenylate cyclase. Science. 1975;187:750–752.
32.Musacchio A, Cantley LC, Harrison SC. Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 subunit. Proc Natl Acad Sci U S A. 1996;93:14373–14378.
121
Signal Transduction
33.Ross EM, Howlett AC, Ferguson KM, Gilman AG. Reconstitution of hormone-sensitive adenylate cyclase activity with resolved components of the enzyme. J Biol Chem. 1978;253:6401–6412.
34.Northup JK, Sternweis PC, Smigel MD, Schleifer LS, Ross EM, Gilman AG. Purification of the regulatory component of adenylate cyclase. Proc Natl Acad Sci U S A. 1980;77:6516–6520.
35.Gupta SK, Gallego C, Lowndes JM, et al. Analysis of the fibroblast transformation potential of GTPase-deficient gip2 oncogenes. Mol Cell Biol. 1992;12:190–197.
36.Lyons J, Landis CA, Harsh G, et al. Two G protein oncogenes in human endocrine tumors. Science. 1990;245:655–659.
37.Malbon CM, Moxham CC. Insulin action impaired by deficiency of the G-protein subunit Gi 2. Nature. 1996;379:840–844.
38.Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol. 1996;36:461–480.
39.Antonelli V, Bernasconi F, Wong YH, Vallar L. Activation of B-Raf and regulation of the mitogen-activated protein kinase pathway by the G(o) chain. Mol Biol Cell. 2000;11:1129–1142.
40.Jordan JD, Carey KD, Stork PJ, Iyengar R. Modulation of rap activity by
direct interaction of G o with Rap1 GTPase-activating protein. J Biol Chem. 1999;274:21507–21510.
41.Ram PT, Horvath CM, Iyengar R. Stat3-mediated transformation of NIH-3T3 cells by the constitutively active Q205L G o protein. Science. 2000;287:142–144.
42.Jiang M, Gold MS, Boulay G, et al. Multiple neurological abnormalities
in mice deficient in the G protein Go. Proc Natl Acad Sci U S A. 1998;95:3269–3274.
43.Singer WD, Brown HA, Sternweis PC. Regulation of eukaryotic phosphatidylinositol-specific phospholipase C and phospholipase D. Annu Rev Biochem. 1997;66:475–509.
44.Taylor SJ, Chae HZ, Rhee SG, Exton JH. Activation of the 1 isozyme of phospholipase C by subunits of the Gq class of G proteins. Nature. 1991;350:516–518.
45.Bence K, Ma W, Kozasa T, Huang XY. Direct stimulation of Bruton’s tyrosine kinase by Gq-protein -subunit. Nature. 1997;389:296–299.
46.Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in G (q)-deficient mice. Nature. 1997;389:183–186.
47.Jiang Y, Ma W, Wan Y, Kozasa T, Hattori S, Huang XY. The G protein G 12 stimulates Bruton’s tyrosine kinase and a rasGAP through a conserved PH/BM domain. Nature. 1998;395:808–813.
48.Hart MJ, Jiang X, Kozasa T, et al. Direct stimulation of the guanine nucleotide exchange activity of p115 RhoGEF by G 13. Science. 1998;280:2112–2114.
122
GTP-Binding Proteins and Signal Transduction
49.Offermanns S, Mancino V, Revel JP, Simon MI. Vascular system defects and impaired cell chemokinesis as a result of G 13 deficiency. Science. 1997;275:533–536.
50.Shan D, Chen L, Wang D, Tan YC, Gu JL, Huang XY. The G protein G (13) is required for growth factor-induced cell migration. Dev Cell. 2006;10:707– 718.
51.Kozasa T, Jiang X, Hart MJ, et al. p115 RhoGEF, a GTPase activating protein for G 12 and G 13. Science. 1998;280:2111.
52.Simon MI, Strathmann MP, Gautam N. Diversity of G proteins in signal transduction. Science. 1991;252:802–808.
53.McKenzie FR, Kelly EC, Unson CG, Spiegel AM, Milligan G. Antibodies which recognize the C-terminus of the inhibitory guanine-nucleotide- binding protein (Gi) demonstrate that opioid peptides and foetal-calf serum stimulate the high-affinity GTPase activity of two separate pertussis-toxin substrates. Biochem J. 1988;249:653–659.
54.McKenzie FR, Milligan G. -Opioid-receptor-mediated inhibition of adenylate cyclase is transduced specifically by the guanine-nucleotide- binding protein Gi2. Biochem J. 1990;267:391–398.
55.Sullivan KA, Miller RT, Masters SB, Beiderman B, Heideman W, Bourne HR. Identification of receptor contact site involved in receptor-G protein coupling. Nature. 1987;330:758–760.
56.Berlot CH, Bourne HR. Identification of effector-activating residues of Gs . Cell. 1992;68:911–922.
57.Iiri T, Farfel Z, Bourne HR. G-protein diseases furnish a model for the turnon switch. Nature. 1998;394:35–38.
58.Coleman DE, Berghuis AM, Lee E, Linder ME, Gilman AG, Sprang SR. Structures of active conformations of Gi 1 and the mechanism of GTP hydrolysis. Science. 1994;265:1405–1412.
59.Lambright DG, Noel JP, Hamm HE, Sigler PB. Structural determinants for activation of the -subunit of a heterotrimeric G protein. Nature. 1994;369:621–628.
60.Remmers AE, Engel C, Liu M, Neubig RR. Interdomain interactions regulate GDP release from heterotrimeric G proteins. Biochemistry. 1999;38:13795–13800.
61.Markby DW, Onrust R, Bourne HR. Separate GTP binding and GTPase activating domains of a G subunit. Science. 1993;262:1895–1901.
62.Liu W, Northup JK. The helical domain of a G protein subunit is a regulator of its effector. Proc Natl Acad Sci U S A. 1998;95:12878–12883.
63.Milburn MV, Tong L, deVos AM, et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science. 1990;247:939–945.
64.Prive GG, Milburn MV, Tong L, et al. X-ray crystal structures of transforming p21 ras mutants suggest a transition state stabilization mechanism for GTP hydrlysis. Proc Natl Acad Sci U S A. 1992;89:3649–3653.
123
Signal Transduction
65.de Vos AM, Tong L, Milburn MV, et al. Three dimensional structure of an oncogene protein catalytic domain of human c-H-ras p21. Science. 1988;239:888–893.
66.Pai EF, Krengel U, Petsko GA, Goody RS, Kabsch W, Wittinghofer A. Refined crystal structure of the triphosphate conformation of H-ras p21 at 1.35
A resolution: implications for the mechanism of GTP hydrolysis. EMBO J. 1990;9:2351–2359.
67.Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. Crystal structure of the
catalytic domains of adenylyl cyclase in a complex with Gs .GTP S. Science. 1997;278:1907–1916.
68.Abramow-Newerly M, Roy AA, Nunn C, Chidiac P. RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal. 2006;18:579–591.
69.Slep KC, Kercher MA, He W, Cowan CW, Wensel TG, Sigler PB. Structural determinants for regulation of phosphodiesterase by a G protein at 2.0 Å,. Nature. 2001;409:1071–1077.
70.Lindorfer MA, Myung C-S, Savino Y, Yasuda H, Khazan R, Garrison JC. Differential activity of the G protein 5 2 subunit at receptors and effectors. J Biol Chem. 1998;273:34429–36344.
71.Macrez-Leprêtre N, Kalkbrenner F, Morel J-L, Schultz G, Mironneau J. G protein heterotrimer G 13 1 3 couples the angiotensin AT1A receptor to increases in cytoplasmic Ca2 in rat portal vein myocytes. J Biol Chem. 1997;272:10095–10102.
72.Rhee SG, Bae YS. Regulation of phosphoinositide specific phospholipase C isozymes. J Biol Chem. 1997;272:15045–15048.
73.Rebois R, Hébert TE. Protein complexes involved in heptahelical receptormediated signal transduction. Recept Chann. 2003;9:169–194.
74.Makino ER, Handy JW, Li T, Arshavsky VY. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein subunit. Proc Natl Acad Sci U S A. 1999;96: 1947–1952.
75.Snow BE, Krumins AM, Brothers GM, et al. A G protein subunit-like domain shared between RGS11 and other RGS proteins specifies binding to G 5 subunits. Proc Natl Acad Sci U S A. 1998;95:13307–13312.
76.Chen CK, Burns ME, He W, Wensel TG, Baylor DA, Simon MI. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9–1. Nature. 2000;403:557–560.
77.Sondek J, Siderovski DP. G -like (GGL) domains: new frontiers in G-protein signaling and -propeller scaffolding. Biochem Pharmacol. 2001;61:1329– 1337.
78.Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. Purified subunits of GTP-binding proteins regulate muscarinic K channel activity in heart. Nature. 1987;325:321–326.
124
GTP-Binding Proteins and Signal Transduction
79.Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B. GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature. 1985;317:536–538.
80.Wickman K, Clapham DE. Ion-channel regulation by G-proteins. Physiol Rev. 1995;75:865–885.
81.Neer EJ, Clapham DE. Roles of G protein subunits in transmembrane signalling. Nature. 1988;333:129–134.
82.Reuveny E, Slesinger PA, Inglese J, et al. Activation of the cloned muscarinic potassium channel by G protein subunits. Nature. 1994;370:143–146.
83.Jeselma CL, Axelrod A. Stimulation of phospholipase A2 activity in bovine rod outer segments by the subunits of transducin and its inhibition by the -subunit. J Biol Chem. 1987;84:3623–3627.
84.Camps M, Hou C, Sidiropoulos D, Stock JB, Jakobs KH. P. Gierschik, Stimulation of phospholipase C by guanine-nucleotide-binding proteinsubunits,. Eur J Biochem. 1992;206:821–831.
85.Corey S, Clapham DE. The stoichiometry of G binding to G-protein- regulated inwardly rectifying K channels (GIRKs). J Biol Chem. 2001;276:11409–11413.
86.Tesmer VM, Kawano T, Shankaranarayanan A, Kozasa T, Tesmer JJ. Snapshot of activated G proteins at the membrane: the G q-GRK2-G complex. Science. 2005;310:1686–1690.
87.Daaka Y, Luttrell LM, Lefkowitz RJ. Switching of the coupling of the 2- adrenergic receptor to different G proteins by protein kinase A. Nature. 1999;390:88–91.
88.Menard L, Ferguson SS, Barak LS, et al. Members of the G protein-coupled
receptor kinase family that phosphorylate the 2-adrenergic receptor facilitate sequestration. Biochemistry. 1996;35:4155–4160.
89.Goodman OB, Krupnick JG, Santini F, et al. -Arrestin acts as a
clathrin adaptor in endocytosis of the 2-adrenergic receptor. Nature. 1996;383:447–450.
90.Heuss H, Gerber U. G-protein-independent signaling by G-protein- coupled receptors. Trends Neurosci. 2000;23:469–475.
91.Scher CD, Scolnick EM, Siegler R. Induction of erythroid leukaemia by Harvey and Kirsten sarcoma viruses. Nature. 1975;256:225–226.
92.Zheng B, de Vries L, Farquhar MG. Divergence of RGS proteins: Evidence for the existence of six mammalian RGS subfamilies. Trends Biochem Sci. 2001;24:411–414.
93.Harvey JJ. An unidentified virus which causes the rapid production of tumours in mice. Nature. 1964;204:1104–1105.
94.Kirsten WH, Carter RE, Pierce MI. Studies on the relationship of viral infections to leukemia in mice: The accelerating agent in AKR mice. Cancer. 1962;15:750–758.
125
Signal Transduction
95. Shimizu K, Goldfarb M, Suard Y, et al. Three human transforming genes are related to the viral ras oncogenes. Proc Natl Acad Sci U S A. 1983;80:2112–2116.
96. Strathmann MP, Simon MI. G 12 and G 13 subunits define a fourth class of G protein. Proc Natl Acad Sci U S A. 1991;88:5582–5586.
97. Shih TY, Papageorge AG, Stokes PE, Weeks MO, Scolnick EM. Guanine nucleotide-binding and autophosphorylating activities associated with the p21src protein of Harvey murine sarcoma virus. Nature. 1980;287:686–691.
98. Gibbs JB, Sigal IS, Poe M, Scolnick EM. Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. Proc Natl Acad Sci U S A. 1984;81:5704–5708.
99. Parada LF, Tabin CJ, Shih C, Weinberg RA. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297:474–478.
100.Valencia A, Chardin P, Wittinghofer A, Sander C. The ras protein family: evolutionary tree and role of conserved amino acids. Biochemistry. 1991;30:4637–4648.
101.Broek D, Toda T, Michaeli T, et al. The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell. 1987;48:789–799.
102.DeFeo-Jones D, Tatchell K, Robinson LC, et al. Mammalian and yeast ras gene products: biological function in their heterologous systems. Science. 1985;228:179–184.
103.Kataoka T, Powers S, Cameron S, et al. Functional homology of mammalian and yeast RAS genes. Cell. 1985;40:19–26.
104.Stacey DW, Marshall MS, Gibbs JB, Feig LA. Preferential inhibition of the oncogenic form of RasH by mutations in the GAP binding/’effector’ domain. Cell. 1991;64:625–633.
105.Segal M, Willumsen BM, Levitzki A. Residues crucial for Ras interaction with GDP-GTP exchangers. Proc Natl Acad Sci U S A. 1993;90:5564–5568.
106.Brunger AT, Milburn MV, Tong L, et al. Crystal structure of an active form of RAS protein, a complex of a GTP analog and the HRAS p21 catalytic domain. Proc Natl Acad Sci U S A. 1990;87:4849–4853.
107.Gibbs JB. Ras C-terminal processing enzymes: New drug targets?. Cell 1991;65:1–4.
108.Reuveni H, Geiger T, Geiger B, Levitzki A. Reversal of the Ras-induced transformed phenotype by HR12, a novel ras farnesylation inhibitor, is mediated by the Mek/Erk pathway. J Cell Biol. 2000;151:1179–1192.
109.Perucho M, Goldfarb M, Shimizu K, Lama C, Fogh J, Wigler M. Human- tumor-derived cell lines contain common and different transforming genes. Cell. 1981;27:467–476.
110.Seeburg PH, Colby WW, Capon DJ, Goeddel DV, Levinson AD. Biological properties of human c-Ha-ras1 genes mutated at codon 12. Nature. 1984;312:71–75.
126
GTP-Binding Proteins and Signal Transduction
111.Feramisco JR, Gross M, Kamata T, Rosenberg M, Sweet RW. Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell. 1984;38:109–117.
112.Stacey DW, Kung H-F. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Naturem. 1984;310:508–511.
113.Mulcahy LS, Smith LR, Stacey DW. Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells. Nature. 1985;313:241–243.
114.Kung H-F, Smith MR, Bekesi E, Manne V, Stacey DW. Reversal of transformed phenotype by monoclonal antibodies against Ha-ras p21 proteins. Exp Cell Res. 1986;162:363–371.
115.Stacey DW, Feig LA, Gibbs JB. Dominant inhibitory Ras mutants selectively inhibit the activity of either cellular or oncogenic Ras. Mol Cell Biol. 1991;11:4053–4064.
116.Bar-Sagi D, Feramisco JR. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell. 1985;42:841–848.
117.Altin JG, Wetts R, Bradshaw RA. Microinjection of a p21ras antibody into PC12 cells inhibits neurite outgrowth induced by nerve growth factor and basic fibroblast growth factor. Growth Factors. 1991;4:145–155.
118.Trahey M, McCormick F. A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science. 1987;238:542–545.
119.Gibbs JB, Marshall MS, Scolnick EM, Dixon RA, Vogel US. Modulation of guanine nucleotides bound to Ras in NIH3T3 cells by oncogenes, growth factors, and the GTPase activating protein (GAP). J Biol Chem. 1990;265:20437–20442.
120.Nori M, Vogel US, Gibbs JB, Weber MJ. Inhibition of v-src-induced transformation by a GTPase-activating protein. Mol Cell Biol. 1991;11:2812–2818.
121.al-Alawi N, Xu G, White R, Clark R, McCormick F, Feramisco JR. Differential regulation of cellular activities by GTPase-activating protein and NF1. Mol Cell Biol. 1993;13:2497–2503.
122.Downward J, Graves JD, Warne PH, Rayter S, Cantrell DA. Stimulation of p21ras upon T-cell activation. Nature. 1990;346:719–723.
123.Lazarus AH, Kawauchi K, Rapoport MJ, Delovitch TL. Antigen-induced B lymphocyte activation involves the p21ras and ras, GAP signaling pathway. J Exp Med. 1993;178:1765–1769.
124.DePaolo D, Reusch JE, Carel K, Bhuripanyo P, Leitner JW, Draznin B. Functional interactions of phosphatidylinositol 3-kinase with GTPase-activating protein in 3T3-L1 adipocytes. Mol Cell Biol. 1996;16:1450–1457.
125.Lowy DR, Willumsen BM. Function and regulation of Ras. Annu Rev Biochem. 1993;62:851–891.
127
Signal Transduction
126.Haubruck H, McCormick F. Ras p21: Effects and regulation. Biochim Biophys Acta. 1991;72:215–229.
127.Musacchio A, Gibson T, Rice P, Thompson J, Saraste M. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci. 1993;18:343–348.
128.Weissbach L, Settleman J, Kalady MF, et al. Identification of a human rasGAP-related protein containing calmodulin-binding motifs. J Biol Chem. 1994;269:20517–20521.
129.Martin GA, Yataani A, Clark R, et al. GAP domains responsible for ras p21dependent inhibition of muscarinic atrial K channel currents. Science. 1992;255:192–194.
130.McCormick F. ras GTPase activating protein: signal transmitter and signal terminator. Cell. 1989;13:5–8.
131.Medema RH, de Laat WL, Martin GA, McCormick F, Boss JL. GTPaseactivating protein SH2-SH3 domains induce gene expression in a Ras dependent fashion. Mol Cell Biol. 1992;12:3425–3430.
132.McGlade J, Brunkhorst B, Anderson D, et al. The N-terminal region of GAP regulates cytoskeletal structure and cell-adhesion. EMBO J. 1993;12:3073–3081.
133.Scheffzek K, Ahmadian MR, Wittinghofer A. GTPase-activating proteins: Helping hands to complement an active site. Trends Biochem Sci. 1999;23:257–262.
134.Toda T, Uno I, Ishikawa T, et al. In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell. 1985;40:27–36.
135.Robinson LC, Gibbs JB, Marshall MS, Sigal IS, Tatchell K. CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. Science. 1987;235:1218–1221.
136.Daniel J, Becker JM, Enari E, Levitzki A. The activation of adenylate cyclase by guanyl nucleotides in Saccharomyces cerevisiae is controlled by the CDC25 start gene product. Mol Cell Biol. 1987;7:3857–3861.
137.Chardin P, Camonis JH, Gale NW, et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science. 1993;260:1338–1343.
138.Lambert NA. Dissociation of heterotrimeric G proteins in cells. Sci Signal. 2008;1:re5.
139.Fung BK. Characterization of transducin from bovine retinal rod outer segments. I. Separation and reconstitution of the subunits. J Biol Chem. 1983;258:10495–10502.
140.Panchenko MP, Saxena K, Li Y, et al. Sites important for PLC 2 activation of the G protein subunit map to the sides of the propeller structure.
J Biol Chem. 1998;273:28298–28304.
141.Marbach I, Bar-Sinai A, Minich M, Levitzki A. subunit copurifies with GppNHp-activated adenylyl cyclase. J Biol Chem. 1990;265:9999–10004.
128
GTP-Binding Proteins and Signal Transduction
142.Bar-Sinai A, Marbach I, Shorr RG, Levitzki A. The GppNHp-activated adenylyl cyclase complex from turkey erythrocyte membranes can be isolated with its subunits. Eur J Biochem. 1992;207:703–708.
143.Hunt LT, Dayhoff MO. Structural and functional similarities among hormones and active peptides from distantly related eukaryotes. In: Gross E, Meienhofer J, eds. Peptides: Structure and Biological Function. Rockford, Il: Pierce Chemical Co; 1979:757–760.
144.Bunemann M, Frank M, Lohse MJ. Gi protein activation in intact cells involves subunit rearrangement rather than dissociation. Proc Natl Acad Sci U S A. 2003;100:16077–16082.
145.Janetopoulos C, Jin T, Devreotes P. Receptor-mediated activation of heterotrimeric G-proteins in living cells. Science. 2001;291:2408–2411.
146.Hein P, Frank M, Hoffmann C, Lohse MJ, Bunemann M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 2005;24:4106–4114.
147.Hartman JL, Northup JK. Functional reconstitution in situ of 5- hydroxytryptamine2c (5HT2c) receptors with q and inverse agonism of 5HT2c receptor antagonists. J Biol Chem. 1996;271:22597.
148.Lachance M, Ethier N, Wolbring G, Schnetkamp PPM, Hebert TE. Stable
association of G proteins with 2AR is independent of the state of receptor activation. Cell Signal. 1999;11:523–533.
149.Brown PJ, Schonbrunn A. Affinity purification of a somatostatin receptor-G-protein complex demonstrates specificity in receptor-G- protein coupling. J Biol Chem. 1993;268:6668–6676.
150.Law SF, Reisine T. Changes in the association of G protein subunits with the cloned mouse opioid receptor on agonist stimulation. J Pharmacol Exp Ther. 1997;281:1476–1486.
151.Law SF, Reisine T. Agonist binding to rat brain somatostatin receptors alters the interaction of the receptors with guanine nucleotide-binding regulatory proteins. Mol Pharmacol. 1992;42:398–402.
152.Medici R, Bianchi E, Di Segni G, Tocchini-Valentini GP. Efficient signal transduction by a chimeric yeast-mammalian G protein subunit Gpa1Gs covalently fused to the yeast receptor Ste2. EMBO J. 1997;16:7241– 7249.
129
