Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
28
Добавлен:
30.03.2016
Размер:
2.79 Mб
Скачать

Signal Transduction to and from Adhesion Molecules

Abbreviation

Full name/description

SwissProt entry

Other names/OMIM

 

 

 

 

talin-1

 

Q9Y490

 

 

 

 

 

TP53

tumour supressor protein 53 kDa

P04637

p53

 

 

 

 

Vasp

vasodilator-stimulated

P50552

 

 

phosphoprotein

 

 

 

 

 

 

VCAM-1

vascular cell adhesion molecule-1

P19320

CD106

 

 

 

 

vinculin

 

P18206

 

 

 

 

 

VLA-4

very late antigen-4

P13612

CD49d

 

 

 

 

Xiap

X-linked inhibitor of apoptosis

P98170

 

 

 

 

 

ZO-1

zonala occludens-1

Q07157

tight junction protein-1

 

 

 

 

References

1. Edelman GM. Cell adhesion molecules. Science. 1983;219:450–457.

2. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–314.

3. Brackenbury R, Thiery JP, Rutishauser U, Edelman GM. Adhesion among neural cells of the chick embryo. I. An immunological assay for molecules involved in cell–cell binding.. J Biol Chem 1977;252:6835–6840.

4. Springer T, Galfre G, Secher DS, Milstein C. Mac-1: a macrophage differentiation antigen identified by monoclonal antibody. Eur J Immunol. 1979;9:301–306.

5. Davignon D, Martz E, Reynolds T, Kurzinger K, Springer TA. Lymphocyte function-associated antigen 1 (LFA-1): a surface antigen distinct from Lyt- 2,3 that participates in T lymphocyte-mediated killing. Proc Natl Acad Sci U S A. 1981;78:4535–4539.

6. Tamkun JW, DeSimone DW, Fonda D, et al. Structure of integrin,

a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell. 1986;46:271–282.

7. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science. 1987;238:491–497.

8. Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59:1203–1211.

9. Kasper C, Rasmussen H, Kastrup JS, et al. Structural basis of cell–cell adhesion by NCAM. Nat Struct Biol. 2000;7:389–393.

10.Wojciak-Stothard B, Ridley AJ. Shear stress-induced endothelial cell polarization is mediated by Rho and Rac but not Cdc42 or PI 3-kinases. J Cell Biol. 2003;161:423–439.

409

Signal Transduction

11.Barreiro O, Yanez-Mo M, Serrado JM, et al. Dynamic interaction of VCAM-

1and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol. 2002;157:1233–1245.

12.Huang MT, Mason JC, Birdsey GM, et al. Endothelial intercellular adhesion molecule (ICAM)-2 regulates angiogenesis. Blood. 2005;106:1636–1643.

13.de Fougerolles AR, Springer TA. Intercellular adhesion molecule 3, a third adhesion counter-receptor for lymphocyte function-associated molecule

1on resting lymphocytes. J Exp Med. 1992;175:185–190.

14.Bailly P, Hermand P, Callebaut I, et al. The LW blood group glycoprotein is homologous to intercellular adhesion molecules. Proc Natl Acad Sci U S A. 1994;91:5306–5310.

15.Kilgannon P, Turner T, Meyer J, Wisdom W, Gallatin WM. Mapping of the ICAM-5 (telencephalin) gene, a neuronal member of the ICAM family, to a location between ICAM-1 and ICAM-3 on human chromosome 19p13.2. Genomics 1998;54:328–330.

16.Powell LD, Varki A. I-type lectins. J Biol Chem. 1995;270:14243–14246.

17.Attrill H, Imamura A, Sharma RS, Kiso M, Crocker PR, van Aalten DM. Siglec-7 undergoes a major conformational change when complexed with the (2,8)-disialylganglioside GT1b. J Biol Chem. 2006;281:32774– 32783.

18.O’Keefe TL, Williams GT, Davies SL, Neuberger MS. Hyperresponsive B cells in CD22-deficient mice. Science. 1996;274:798–801.

19.Collins BE, Smith BA, Bengtson P, Paulson JC. Ablation of CD22 in ligand-deficient mice restores B cell receptor signaling. Nat Immunol. 2006;7:199–206.

20.Nishizumi H, Horikawa K, Mlinaric-Rascan I, Yamamoto T. A double-edged kinase Lyn: a positive and negative regulator for antigen receptormediated signals. J Exp Med. 1998;187:1343–1348.

21.Nitschke L. The role of CD22 and other inhibitory co-receptors in B-cell activation. Curr Opin Immunol. 2005;17:290–297.

22.Turksen K, Troy TC. Barriers built on claudins. J Cell Sci. 2004;117:2435– 2447.

23.Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006;68:403–429.

24.Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S. Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol. 1999;147:1351–1363.

25.Xiong JP, Stehle T, Diefenbach B, et al. Crystal structure of the extracellular segment of integrin V 3. Science. 2001;294:339–345.

26.Shimaoka M, Takagi J, Springer TA. Conformational regulation of integrin structure and function. Annu Rev Biophys Biomol Struct. 2002;31:485–516.

27.Tanentzapf G, Brown NH. An interaction between integrin and the talin FERM domain mediates integrin activation but not linkage to the cytoskeleton. Nature Cell Biol. 2006;8:601–606.

410

Signal Transduction to and from Adhesion Molecules

28.Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004;432:59–67.

29.Law SK, Tan SM, Ranganathan S, Cheng M. The integrin L 2 hybrid domain serves as a link for the propagation of activation signal from its stalk regions to the I-like domain. J Biol Chem. 2004;279:54334–54339.

30.Carman CV, Springer TA. Integrin avidity regulation: are changes in affinity and conformation underemphasized. Curr Opin Cell Biol. 2003;15:547–556.

31.Xiao T, Takagi J, Coller BS, Wang JH, Springer TA. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 2004;432:59–67.

32.Carman CV, Springer TA. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr Opin Cell Biol. 2003;15:547–556.

33.Mould AP, Humphries JH. Adhesion articulated. Nature 2004;432:27–28.

34.Miranti CK, Brugge JS. Sensing the environment: a historical perspective on integrin signal transduction. Nat Cell Biol. 2002;4:E83–E90.

35.Miyamoto S, Teramoto H, Coso OA, et al. Integrin function: molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol. 1995;131:791–805.

36.Hato T, Pampori N, Shattil SJ. Complementary roles for receptor clustering and conformational change in the adhesive and signaling functions of integrin IIb 3. J Cell Biol. 1998;141:1685–1695.

37.Brakebusch C, Fassler R. The integrin-actin connection, an eternal love affair. EMBO J. 2003;22:2333.

38.Ducibella T, Anderson E. Cell shape and membrane changes in the eightcell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol. 1975;47:45–58.

39.Yoshida C, Takeichi M. Teratocarcinoma cell adhesion: identification of a cell-surface protein involved in calcium-dependent cell aggregation. Cell. 1982;28:217–224.

40.Gallin WJ, Edelman GM, Cunningham BA. Characterization of L-CAM, a major cell adhesion molecule from embryonic liver cells. Proc Natl Acad Sci U S A. 1983;80:1038–1042.

41.Boller K, Vestweber D, Kemler R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J Cell Biol. 1985;100:327–332.

42.Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 2000;299:551–572.

43.Patel SD, Ciatto C, Chen CP, et al. Type II cadherin ectodomain structures: implications for classical cadherin specificity. Cell. 2006;124:1255–1268.

411

Signal Transduction

44.Chen CP, Posy S, Ben-Shaul A, Shapiro L, Honig BH. Specificity of cell–cell adhesion by classical cadherins: Critical role for low-affinity dimerization through -strand swapping. Proc Natl Acad Sci U S A. 2005;102:8531–8536.

45.Vavylonis D, Kovar DR, O’Shaughnessy B, Pollard TD. Model of forminassociated actin filament elongation. Mol Cell. 2006;21:455–466.

46.Lilien J, Balsamo J. The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of -catenin. Curr Opin Cell Biol. 2005;17:459–465.

47.Ozawa M, Baribault H, Kemler R. The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J. 1989;8:1711– 1717.

48.Li H, Leung TC, Hoffman S, Balsamo J, Lilien J. Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J Cell Biol. 2000;149:1275–1288.

49.Rhee J, Mahfooz NS, Arregui C, Lilien J, Balsamo J, VanBerkum MF. Activation of the repulsive receptor Roundabout inhibits N-cadherin- mediated cell adhesion. Nat Cell Biol. 2002;4:798–805.

50.Curran T, D’Arcangelo G. Role of reelin in the control of brain development. Brain Res Brain Res Rev. 1998;26:285–294.

51.Stoolman LM, Rosen SD. Possible role for cell-surface carbohydrate-binding molecules in lymphocyte recirculation. J Cell Biol. 1983;96:722–729.

52.Lasky LA, Singer MS, Yednock TA, et al. Cloning of a lymphocyte homing receptor reveals a lectin domain. Cell 1989;56:1045–1055.

53.Yago T, Wu J, Wey CD, Klopocki AG, Zhu C, McEver RP. Catch bonds govern adhesion through L-selectin at threshold shear. J Cell Biol. 2004;166:913– 923.

54.Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C. Direct observation of catch bonds involving cell-adhesion molecules. Nature 2003;423:190–193.

55.Somers WS, Tang J, Shaw GD, Camphausen RT. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell 2000;103:467–479.

56.Alon R, Chen S, Fuhlbrigge R, Puri KD, Springer TA. The kinetics and shear threshold of transient and rolling interactions of L-selectin with its ligand on leukocytes. Proc Natl Acad Sci U S A. 1998;95:11631–11636.

57.Ivetic A, Ridley AJ. The telling tail of L-selectin. Biochem Soc Trans. 2004;32:1118–1121.

58.Urzainqui A, Serrador JM, Viedma F, et al. ITAM-based interaction of ERM proteins with Syk mediates signaling by the leukocyte adhesion receptor PSGL-1. Immunity 2002;17:401–412.

59.Laurent TC, Fraser JR. Hyaluronan. FASEB J. 1992;6:2397–2404.

60.Aruffo A, Stamenkovic I, Milnick M, Underhill CB, Seed B. CD44 is the principal cell surface receptor for hyaluronate. Cell 1990;6:1303–1313.

412

Signal Transduction to and from Adhesion Molecules

61.Mytherye K, Blobe GC, Proteoglycan signaling co-receptors: Roles in cell adhesion, migration and invasion. Cell Signal. 2009 in press.

62.Banerji S, Ni J, Wang SX, et al. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol. 1999;144:789–801.

63.Day AJ. The structure and regulation of hyaluronan-binding proteins. Biochem Soc Trans. 1999;27:115–121.

64.Almond A, Deangelis PL, Blundell CD. Hyaluronan: the local solution conformation determined by NMR and computer modeling is close to a contracted left-handed 4-fold helix. J Mol Biol. 2006;358:1256–1269.

65.Teriete P, Banerji S, Noble M, et al. Structure of the regulatory hyaluronan binding domain in the inflammatory leukocyte homing receptor CD44. Mol Cell. 2004;13:483–496.

66.Goldstein LA, Zhou DF, Picker LJ, et al. A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell 1989;56:1063–1072.

67.Gunthert U, Hofmann M, Rudy Y, et al. A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 1991;65:13–24.

68.Tsukita S, Oishi K, Sato N, Sagara J, Kawai A. ERM family members as molecular linkers between the cell surface glycoprotein CD44 and actinbased cytoskeletons. J Cell Biol. 1994;126:391–401.

69.Reedquist KA, Ross E, Koop EA, et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J Cell Biol. 2000;148:1151–1158.

70.Franke B, van Triest M, de Bruijn KM, et al. Sequential regulation of the small GTPase Rap1 in human platelets. Mol Cell Biol. 2000;20:779–785.

71.Tanaka S, Morishita T, Hashimoto Y, et al. C3G, a guanine nucleotidereleasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci U S A.

1994;91:3443–3447.

72.Ohba Y, Ikuta K, Ogura A, et al. Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J. 2001;20:333–3341.

73.Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 2003;4:741–748.

74.Lafuente EM, van Puijenbroek AA, Krause M, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004;7:585–595.

75.Gilmore AP, Burridge K. Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4–5-bisphosphate. Nature 1996;381:531–535.

76.Clark EA, King WG, Brugge JS, Symons M, Hynes RO. Integrin-mediated signals regulated by members of the rho family of GTPases. J Cell Biol. 1998;142:573–586.

77.Frisch SM, Francis H. Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol. 1994;124:619–626.

413

Signal Transduction

78.Raff MC. Cell suicide for beginners. Nature 1998;396:119–122.

79.Genot E, Arrieumerlou C, Ku G, Burgering BM, Weiss A, Kramer IM. The T-cell receptor regulates Akt (protein kinase B) via a pathway involving Rac1 and phosphatidylinositide 3-kinase. Mol Cell Biol. 2000;20:5469–5478.

80.Prutzman KC, Gao G, King ML, et al. The focal adhesion targeting domain of focal adhesion kinase contains a hinge region that modulates tyrosine 926 phosphorylation. Structure 2004;12:881–891.

81.Lim Y, Han I, Jeon J, Park H, Bahk YY, Oh ES. Phosphorylation of focal adhesion kinase at tyrosine 861 is crucial for Ras transformation of fibroblasts. J Biol Chem. 2004;279:29060–29065.

82.Iwahara T, Akagi T, Fujitsuka Y, Hanafusa H. CrkII regulates focal adhesion kinase activation by making a complex with Crk-associated substrate, p130Cas. Proc Natl Acad Sci U S A. 2004;101:17693–17698.

83.Brinkman A, van der Flier S, Kok EM, Dorssers LC. BCAR1, a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J Natl Cancer Inst. 2000;92:112–120.

84.Shen Y, Jia Z, Nagele RG, Ichikawa H, Goldberg GS. SRC uses Cas to suppress Fhl1 in order to promote nonanchored growth and migration of tumor cells. Cancer Res. 2006;66:1543–1552.

85.Frisch SM, Vuori K, Ruoslahti E, Chan-Hui PY. Control of adhesiondependent cell survival by focal adhesion kinase. J Cell Biol. 1996;134:793–799.

86.King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol. 1997;17:4406–4418.

87.Khwaja A, Rodriguez VP, Wennstrom S, Warne PH, Downward J. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 1997;16:2783–2793.

88.Downward J. PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol. 2004;15:177–182.

89.Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol. 1998;10:262–267.

90.Brunet A, Bonni A, Zigmond MJ, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999;96:857–868.

91.Modur V, Nagarajan R, Evers BM, Milbrandt J. FOXO proteins regulate tumor necrosis factor-related apoptosis inducing ligand expression. Implications for PTEN mutation in prostate cancer. J Biol Chem.

2002;277:47928–47937.

92.Dijkers PF, Medema RH, Lammers JW, Koenderman L, Coffer PJ. Expression of the pro-apoptotic Bcl-2 family member Bim is regulated

414

Signal Transduction to and from Adhesion Molecules

by the forkhead transcription factor FKHR-L1. Curr Biol. 2000;10: 1201–1204.

93.Dijkers PF, Birkenkamp KU, Lam EW, et al. FKHR-L1 can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B- enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol. 2002;156:531–542.

94.Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC. HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol. 2001;3:973–982.

95.Plas DR, Rathmell JC, Thompson CB. Homeostatic control of lymphocyte survival: potential origins and implications. Nat Immunol. 2002;3:515– 521.

96.Majewski N, Nogueira V, Bhaskar P, et al. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004;16:819–830.

97.Mitra SK, Mikolon D, Molina JE, et al. Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene. 2006;25:5969–5984.

98.Wary KK, Mariotti A, Zurzolo C, Giancotti FG. A requirement for caveolin- 1 and associated kinase Fyn in integrin signaling and anchoragedependent cell growth. Cell 1998;94:625–634.

99.Assoian RK. Anchorage-dependent cell cycle progression. J Cell Biol. 1997;136:1–4.

100.Hasegawa H, Kiyokawa E, Tanaka S, et al. DOCK180, a major CRKbinding protein, alters cell morphology upon translocation to the cell membrane. Mol Cell Biol. 2006;16:1770–1776.

101.Kiyokawa E, Hashimoto Y, Kobayashi S, Sugimura H, Kurata T, Matsuda M. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 1998;12:3331–3336.

102.Bottazzi ME, Zhu X, Bohmer RM, Assoian RK. Regulation of p21(cip1) expression by growth factors and the extracellular matrix reveals a role for transient ERK activity in G1 phase. J Cell Biol. 1999;146: 1255–1264.

103.Lenormand P, Sardet C, Pages G, L’Allemain G, Brunet A, Pouyssegur J. Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol. 1993;122:1079–1088.

104.Aplin AE, Stewart SA, Assoian RK, Juliano RL. Integrin-mediated adhesion regulates ERK nuclear translocation and phosphorylation of Elk-1. J Cell Biol. 2001;153:273–282.

105.Bryant P, Zheng Q, Pumiglia K. Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and - independent mechanisms. Mol Cell Biol. 2006;26:4201–4213.

415

Signal Transduction

106.Wang R, Kobayashi R, Bishop JM. Cellular adherence elicits ligandindependent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A. 1996;93:8425–8430.

107.Giancotti FG, Tarone G. Positional control of cell fate through joint integrin/receptor protein kinase signaling. Annu Rev Cell Dev Biol. 2003;19:173–206.

108.Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G, Giancotti FG. 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 2006;126:489–502.

416

Соседние файлы в папке Gompert Signal Transd