Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Books for lectures / Gompert Signal Transd / Ch16 traffic of white blood cells TNF NFkB Chemokines.pdf
Скачиваний:
22
Добавлен:
30.03.2016
Размер:
2.56 Mб
Скачать

Traffic of White Blood Cells

Abbreviation

Full name/description

SwissProt entry

Other names

 

 

 

 

TNF-

tumour necrosis factor-alpha

P01375

 

 

 

 

 

TNF-

tumour necrosis factor-beta

P01374

LT-a

 

 

 

 

TNFR1

tumour necrosis factor

P19438

CD120a

 

receptor-1

 

 

 

 

 

 

TNFR2

tumour necrosis factor

P20333

CD120b, TNFR1B

 

receptor-2

 

 

 

 

 

 

TRADD

TNF-receptor associated death

Q15628

 

 

domain protein

 

 

 

 

 

 

TRAF2

TNF-receptor associated

Q12933

 

 

factor-2

 

 

 

 

 

 

VCAM-1

vascular cellular adhesion

P19320

CD106

 

molecule-1

 

 

 

 

 

 

WAVE

Wasp-verproline homology

Q2558

 

 

domain-containing protein

 

 

 

 

 

 

References

1. Addison W. Experimental and practical researches on the structure and function of blood corpuscles; on inflammation; and on the origin and nature of tubercles in the lungs. Trans Provinc Med Surg Assoc. 1843;11:233–305.

2. Waller A. Microscopic examination of some of the principal tissues of the animal frame, as observed in the tongue of the living frog, toad etc. Phil Mag. 1846;29:271–287.

3. Waller A. Microscopic observations on the perforation of the capillaries by the corpuscles of the blood, and on the origin of mucus and pusglobules. Phil Mag. 1846;29:397–405.

4. Cohnheim J. Lectures on General Pathology. London: The New Sydenham Society; 1882.

5. Malkin HM. Julius Cohnheim (1839-1884). His life and contributions to pathology. Ann Clin Lab Sci. 1984; 14: 335–342.

6. Marchesi VT, Florey HW. Electron micrographic observations on the emigration of leucocytes. Quart J Exp Physiol. 1960;45:343–348.

7. Toniolo C, Bonora GM, Showell H, Freer RJ, Becker EL. Structural requirements for formyl homooligopeptide chemoattractants. Biochemistry. 1984;23:698–704.

505

Signal Transduction

8. Bennett JP, Hirth KP, Fuchs E, Sarvas M, Warren GB. The bacterial factors which stimulate neutrophils may be derived from procaryote signal peptides. FEBS Lett. 2006;116:57–61.

9. Graille M, Stura EA, Corper AL, et al. Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A. 2000;97:5399–5404.

10.Gomez MI, Lee A, Reddy B, et al. Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med. 2004;10:842–848.

11.Kristiansen SV, Pascual V, Lipsky PE. Staphylococcal protein A induces biased production of Ig by VH3-expressing B lymphocytes. J Immunol. 1994;153:2974–2982.

12.Shawar SM, Rich RR, Becker EL. Peptides from the amino-terminus of mouse mitochondrially encoded NADH dehydrogenase subunit 1 are potent chemoattractants. Biochem Biophys Res Commun. 1995;211:

812–818.

13.LeGrand A. De I’analogie et des différences entire les tubercules et les scrofuels: Influence des maladies éruptives sur le développement et la marche des scrofules et les tubercules. Rev. Méd. francaise et étrangère. 1848;2:392–148.

14.Bruns P. Die Heilwirkung des Erysipels auf Geschwülste [The healing effect of erysipelas on tumours]. Beitr Klin Chir. 1888;3:443–466.

15.Coley WB. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14:199–220.

16.Pearl R. Cancer and tuberculosis. Am J Hyg. 1929;9:97–159.

17.Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man. Acta Med Scan suppl. 1953;275:5–103.

18.Shear MJ, Andervont HB. Chemical treatment of tumors. III. Separation of hemorrhage-producing fration of B. coli filtrate. Proc Soc Exp Biol Med. 1936;34:323–325.

19.Shear MJ, Turner FC. Chemical treatment of tumors. V. Isolation of the hemorrhage-producing fraction from Serratia marcescens (Bacillus prodigiosus) culture filtrate. J Natl Cancer Inst. 1943;4:81–97.

20.Anderson BF, Legallaies FY. Vascular reactions of normal and malignant tissues in vivo: the role of hypotension in the action of a bacterial polysaccharide on tumors. J Natl Cancer Inst. 1952;12:1279–1295.

21.Feldmann M, Brennan FM, Williams RO, et al. Evaluation of the role of cytokines in autoimmune disease: the importance of TNFin rheumatoid arthritis. Prog Growth Factor Res. 1992;4:247–255.

22.Feldmann M, Maini RN. Anti-TNF- therapy of rheumatoid arthritis: what have we learned? Annu Rev Immunol 2001;19:163–196.

506

Traffic of White Blood Cells

23.Ostermann G, Weber KS, Zernecke A, Schroder A, Weber C. JAM-1 is a

ligand of the 2 integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol. 2002;3:151–158.

24.Deng GM, Zheng L, Chan FK, Lenardo M. Amelioration of inflammatory arthritis by targeting the pre-ligand assembly domain of tumor necrosis factor receptors. Nat Med. 2005;11:1066–1072.

25.Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975;72:3666–3670.

26.Kolb WP, Granger GA. Lymphocyte in vitro cytotoxicity: characterization of human lymphotoxin. Proc Natl Acad Sci U S A. 1968;61:1250–1255.

27.Ruddle NH, Waksman BH. Cytotoxicity mediated by soluble antigen and lymphocytes in delayed hypersensitivity. 3. Analysis of mechanism.

J Exp Med. 1968;128:1267–1279.

28.Paterson Y, Maciag PC. Listeria-based vaccines for cancer treatment. Curr Opin Mol Ther. 2005;7:454–460.

29.Aggarwal BB. Signalling pathways of the TNF superfamily: a doubleedged sword. Nat Rev Immunol. 2003;3:745–756.

30.Suda T, Hashimoto H, Tanaka M, Ochi T, Nagata S. Membrane Fas ligand kills human peripheral blood T lymphocytes, and soluble Fas ligand blocks the killing. J Exp Med. 1997;186:2045–2050.

31.Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 1995;83:793–802.

32.Tamatani M, Che YH, Matsuzaki H, et al. Tumor necrosis factor induces Bcl-2 and Bcl-x expression through NF B activation in primary hippocampal neurons. J Biol Chem. 1999;274:8531–8538.

33.Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling.

Cell Death Differ. 2003;10:45–65.

34.Takada H, Chen NJ, Mirtsos C, et al. Role of SODD in regulation of tumor necrosis factor responses. Mol Cell Biol. 2003;23:4026–4033.

35.Cha SS, Sung BJ, Kim YA, et al. Crystal structure of TRAIL-DR5 complex identifies a critical role of the unique frame insertion in conferring recognition specificity. J Biol Chem. 2000;275:31171–31177.

36.Osborn L, Hession C, Tizard R, et al. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell. 1989;59:1203–1211.

37.Pohlman TH, Stanness KA, Beatty PG, Ochs HD, Harlan JM. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factorincreases neutrophil adherence by a CDw18-dependent mechanism. J Immunol. 1986;136:4548–4553.

38.Sen R, Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell. 1986:705–716.

507

Signal Transduction

39.Itoh N, Nagata S. A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem. 1993;268: 10932–10937.

40.Hsu H, Xiong J, Goeddel DV. The TNF-receptor 1-associated protein TRADD signals cell death and NF- B activation. Cell. 1995;81:495–504.

41.Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNG requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–257.

42.Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-kB: variations on a common theme. Cell Mol Life Sci. 2008;65:2964–78.

43.Beutler B, Greenwald D, Hulmes JD, et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature. 1985;316:552–554.

44.Esper DH, Harb WA. The cancer cachexia syndrome: a review of metabolic and clinical manifestations. Nutr Clin Pract. 2005;20:369–376.

45.Ariel A, Fredman G, Sun YP, et al. Apoptotic neutrophils and T cells sequester chemokines during immune response resolution through modulation of CCR5 expression. Nat Immunol. 2006.

46.Zigmond SH. Ability of polymorphonuclear leukocytes to orient in gradients of chemotactic factors. J Cell Biol. 1977;75:606–616.

47.Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature. 1996;382:833–835.

48.Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 1996;86:367–377.

49.Middleton J, Neil S, Wintle J, et al. Transcytosis and surface presentation of IL-8 by venular endothelial cells. Cell. 1997;91:385–395.

50.Proudfoot AE. The biological relevance of chemokine-proteoglycan interactions. Biochem Soc Trans. 2006;34:422–426.

51.Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity. 2000;12:121–127.

52.Lapidot T, Dar A, Kollet O. How do stem cells find their way home? Blood 2005;106:1901–1910.

53.Dar A, Goichberg P, Shinder V, et al. Chemokine receptor CXCR4dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nat Immunol. 2005;6:1038–1046.

54.Skelton NJ, Quan C, Reilly D, Lowman H. Structure of a CXC chemokinereceptor fragment in complex with interleukin-8. Structure. 1999;7: 157–168.

508

Traffic of White Blood Cells

55.Arai H, Tsou CL, Charo IF. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is

mediated by dimers released by activation of G i-coupled receptors. Proc Natl Acad Sci U S A. 1997;94:14495–14499.

56.Neptune ER, Bourne HR. Receptors induce chemotaxis by releasing thesubunit of Gi, not by activating Gq or Gs. Proc Natl Acad Sci U S A. 1997;94:14489–14494.

57.Van Keymeulen A, Wong K, Knight ZA, et al. To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J Cell Biol. 2006;174:437–445.

58.Baggiolini M. Chemokines and leukocyte traffic. Nature. 1998;392: 565–568.

59.Wright SD, Silverstein SC. Tumor-promoting phorbol esters stimulate C3b and C3b receptor-mediated phagocytosis in cultured human monocytes. J Exp Med. 1982;156:1149–1164.

60.Hogg N, Laschinger M, Giles K, McDowall A. T-cell integrins: more than just sticking points. J Cell Sci. 2003;116:4695–4705.

61.Laudanna C, Campbell JJ, Butcher EC. Role of Rho in chemoattractantactivated leukocyte adhesion through integrins. Science. 1996;271: 981–983.

62.Crittenden JR, Bergmeier W, Zhang Y, et al. CalDAG-GEFI integrates signaling for platelet aggregation and thrombus formation. Nat Med. 2004;10:982–986.

63.Pizon V, Lerosey I, Chardin P, Tavitian A. Nucleotide sequence of a human cDNA encoding a ras-related protein (rap1B). Nucleic Acids Res. 1988;16:7719.

64.Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M. A ras-related gene with transformation suppressor activity. Cell. 1989;56:77–84.

65.Zwartkruis FJ, Bos JL. Ras and Rap1: two highly related small GTPases with distinct function. Exp Cell Res. 2000;1253:157–165.

66.Franke B, Akkerman JW, Bos JL. Rapid Ca2 -mediated activation of Rap1 in human platelets. EMBO J. 1997;16:252–259.

67.Reedquist KA, Ross E, Koop EA, et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J Cell Biol. 2000;148:1151–1158.

68.Liu L, Schwartz BR, Tupper J, Lin N, Winn RK, Harlan JM. The GTPase Rap1 regulates phorbol 12-myristate 13-acetate-stimulated but not

ligand-induced 1 integrin-dependent leukocyte adhesion. J Biol Chem. 2002;277:40893–40900.

69.Shimonaka M, Katagiri K, Nakayama T, Fujita N, Tsuruo T, Yoshie O, Kinashi T. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow.

J Cell Biol. 2003;161:417–427.

509

Signal Transduction

70.Lafuente EM, van Puijenbroek AA, Krause M, et al. RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion. Dev Cell. 2004;7:585–595.

71.Katagiri K, Maeda A, Shimonaka M, Kinashi T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol. 2003;4:741–748.

72.Bos JL. Linking Rap to cell adhesion. Curr Opin Cell Biol. 2005;17:123–128.

73.Han J, Lim CJ, Watanabe N, et al. Reconstructing and deconstructing agonist-induced activation of integrin II 3. Curr Biol. 2006;16:1796–1806.

74.Campbell ID, Ginsberg MH. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem Sci. 2004;29:429–435.

75.Fleming IN, Batty IH, Prescott AR, et al. Inositol phospholipids regulate the guanine-nucleotide-exchange factor Tiam1 by facilitating its binding to the plasma membrane and regulating GDP/GTP exchange on Rac1. Biochem J. 2004;382:857–865.

76.Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–465.

77.Suetsugu S, Kurisu S, Oikawa T, Yamazaki D, Oda A, Takenawa T. Optimization of WAVE2 complex-induced actin polymerization by membrane-bound IRSp53, PIP(3), and Rac. J Cell Biol. 2006;173:571–585.

78.Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635–638.

79.Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT, Nakano H. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization.

J Exp Med. 1999;189:451–460.

80.Martin-Padura I, Lostaglio S, Schneemann M, et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily

that distributes at intercellular junctions and modulates monocyte transmigration. J Cell Biol. 1998;142:117–127.

81.Cunningham SA, Rodriguez JM, Arrate MP, Tran TM, Brock TA. JAM2 interacts with 4 1. Facilitation by JAM3. J Biol Chem. 2002;277: 27589–27592.

82.Arrate MP, Rodriguez JM, Tran TM, Brock TA, Cunningham SA. Cloning of human junctional adhesion molecule 3 (JAM3) and its identification as the JAM2 counter-receptor. J Biol Chem. 2001;276:45826–45832.

83.Santoso S, Sachs UJ, Kroll H, et al. The junctional adhesion molecule 3 (JAM-3) on human platelets is a counterreceptor for the leukocyte integrin Mac-1. J Exp Med. 2002;196:679–691.

84.Thomas KM, Pyun HY, Navarro J. Molecular cloning of the fMet-Leu-Phe receptor from neutrophils. J Biol Chem. 1990;265:20061–20064.

510

Traffic of White Blood Cells

85.Alblas J, Ulfman L, Hordijk P, Koenderman L. Activation of Rhoa and ROCK are essential for detachment of migrating leukocytes. Mol Biol Cell. 2001;12:2137–2145.

86.Mayadas TN, Cullere X. Neutrophil 2 integrins: moderators of life or death decisions. Trends Immunol. 2005;26:388–395.

87.Butcher EC. Leukocyte-endothelial cell recognition: three (or more) steps to specificity and diversity. Cell. 1991;67:1033–1036.

88.Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994;76:301–314.

511

Соседние файлы в папке Gompert Signal Transd