Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Savchenko_O_Ya__FMSh_NGU__Zadachi_po_fizike

.pdf
Скачиваний:
2973
Добавлен:
28.03.2016
Размер:
5.26 Mб
Скачать

При достаточно большом k эта энергия превзойдет первоначальную энергию заряженного конденсатора! Следовательно, в чем-то наши рассуждения ошибочны. Найдите эту ошибку.

8.2.33. Полная плотность тока в электролитах является суммой плотности тока положительных ионов и плотности тока отрицательных ионов: j = e+n+v++ env, где e±, v± и n± — заряд, скорость положительных и отрицательных ионов и их число в единице объема. Почему масса вещества, выделившегося на катоде, пропорциональна полному току, а не току только положительных ионов?

8.2.34 . Противо-ЭДС одной электролитической ванны E. Имеется конденсатор, заряженный до напряжения V E. Сколько одинаковых ванн нужно соединить последовательно, чтобы, разрядив конденсатор, выделить на них максимальную массу металла из раствора соли?

§8.3. Электрические цепи

8.3.1. Шкала вольтметра имеет 150 делений. Вольтметр имеет четыре клеммы, рассчитанные на измерение напряжения до 3, 15 и 150 В. Стрелка

прибора отклоняется на 50 делений при прохождении через него тока 1 мА.Каково внутреннее сопротивление прибора при включении его на различные диапазоны?

8.3.2.Какой шунт нужно присоединить к гальванометру, имеющему шкалу на 100 делений с ценой деления 1 мкА и внутреннее сопротивление 180 Ом, чтобы им можно было измерять ток до 1 мА?

8.3.3.Вольтметр со шкалой на 100 В имеет внутренее сопротивление 10 кОм. Какую наибольшую разность потенциалов можно измерить этим прибором, если присоединить к нему добавочное сопротивление 90 кОм?

8.3.4. Как будут реагировать приборы на перемещение движка реостатов в направлении стрелок на схемах а–в и на замыкание ключей в схеме г–е? Внут-

реннее сопротивление генератора очень мало ).

8.3.5. а. Требуется определить падение напряжения на сопротивлении R. Для этого к концам сопротивления подключают вольтметр. Какая относительная погрешность будет допущена при измерениях, если показания вольтметра

) Кружком со стрелкой на схемах обозначен генератор. Стрелка указывает направление тока генератора.

191

принять за то, которое имело место до его подключения? Сила тока в цепи поддерживается постоянной. Сопротивление вольтметра r.

б. Для измерения тока в цепи с сопротивлением R включен амперметр. Какая относительная ошибка будет допущена, если считать, что включение амперметра не изменило тока? Напряжение на концах цепи поддерживается постоянным. Сопротивление амперметра r.

8.3.6. Вольтметр включен параллельно сопротивлению 4 кОм и показывает 36 В. Напряжение на клеммах источника тока поддерживается постоянным и равным 100 В. Найдите отношение тока, идущего через вольтметр, к току, идущему через сопротивление 6 кОм. Что покажет этот вольтметр, если заменить сопротивления соответственно на 4 и 6 Ом?

8.3.7.Для нормальной работы прибора необходимо напряжение 20 В, а напряжение в сети 120 В. Экспериментатор подключил к цепи делитель напряжения с сопротивлением плеч 5 и 1 кОм и до подключения прибора высокоомным вольтметром проверил, что на втором сопротивлении напряжение действительно 20 В. Однако подключенный прибор не заработал. Экспериментатор сообразил в чем дело и добился нормальной работы прибора, подключив его к делителю напряжения с сопротивлением плеч 250 и 100 Ом. Найдите сопротивление прибора, если и в этом случае он подключен ко второму сопротивлению делителя.

8.3.8.Переключая вольтметр на измерение вдвое большего диапазона напряжения (со 100 на 200 В), ожидали отклонения стрелки на вдвое меньшее число делений. Однако этого не произошло, хотя в остальной части цепи ничего не изменяли. Большее или меньшее напряжение покажет вольтметр после переключения?

8.3.9. Чему равна разность потенциалов между клеммами в схеме на рисун-

ке? Что покажет амперметр, если его подключить к клеммам )?

♦ 8.3.10. В мосте Уитстона сопротивления подбирают таким образом, что чувствительный гальванометр, подключенный к точкам A и B, показывает нуль. Считая сопротивления R1, R2, r известными, определите сопротивление rx. Если поменять местами батарею и гальванометр, то снова получится мостовая схема. Сохраняется ли баланс в новой схеме?

♦ 8.3.11. Одни и те же приборы при присоединении их по трем разным схемам дают следующие показания: V1, I1; V2, I2; V3, I3. Найдите сопротивление вольтметра, резистора и амперметра. Напряжение, подаваемое на эти схемы, не обязательно одинаково.

) Сопротивления на рисунках здесь и далее приведены в омах без указания единиц на схемах. Если характеристики измерительных приборов не упомянуты, то сопротивление амперметра считайте много меньшим сопротивлений схемы, а сопротивление вольтметра — много б´ольшим.

192

8.3.12 . Участок схемы состоит из неизвестных сопротивлений. Как, имея амперметры, вольтметр, батарею и соединительные провода, измерить сопротивление R, не разрывая ни одного контакта в схеме?

8.3.13. Чему равно сопротивление между клеммами в схеме, изображенной на рисунке?

8.3.14. а. Каким должно быть сопротивление r, чтобы входное сопротивление между клеммами было равно тоже r?

б . Какое сопротивление r нужно присоединить к клеммам C и D, чтобы сопротивление всей цепочки между клеммами A и B не зависело от числа элементарных ячеек?

в. Полный ток в цепи равен I. Определите токи в n-й ячейке, если цепочка сопротивлений бесконечна. Чему равно сопротивление такой цепочки?

♦ 8.3.15 . Аттенюатор представляет собой делитель напряжения, схема которого представлена на рисунке. Каковы должны быть сопротивления R1 и R2, чтобы на каждом следующем сопротивлении R1 напряжение было в десять раз меньше, чем на предыдущем?

13

193

8.3.16. В сопротивлении R на единицу прошедшего заряда рассеивается энергия IR независимо от направления тока I. Генератор на единицу прошедшего через него заряда передает в цепь энергию (ЭДС) E, если направление тока совпадает с направлением напряженности сторонних сил (сторонней силы, отнесенной к единице заряда), и забирает энергию E, если их направления противоположны. При прохождении тока через генератор на его внутреннем сопротивлении тоже происходит рассеяние энергии. Используя энергетические соображения, определите разность потенциалов на участках цепей, приведенных на рисунке.

8.3.17.Батарея, замкнутая на сопротивлении 10 Ом, дает ток 3 А; замкнутая на сопротивление 20 Ом, она дает ток 1,6 А. Найдите ЭДС и внутреннее сопротивление батареи.

8.3.18. К ящику с двумя клеммами подключили амперметр, сопротивление 1 Ом и источник постоянного напряжения 5 В. Амперметр показал ток 1 А. Когда включили другой источник напряжения 20 В, амперметр показал ток 2А. Что находится внутри ящика?

8.3.19. Идеальным генератором напряжения называется такой генератор, напряжение на котором при любой нагрузке одинаково. Идеальным генератором тока называется генератор, создающий одинаковый ток при любой нагрузке. Какой смысл имеет утверждение: «У идеального генератора тока бесконечное сопротивление, а у идеального генератора напряжение нулевое»? Реальный генератор напряжения теряет энергию на внутреннем сопротивлении, он эквивалентен идеальному генератору напряжения с последовательно присоединенным сопротивлением. Реальный генератор тока имеет конечное сопротивление утечки, он эквивалентен идеальному генератору тока с параллельно присоединенным сопротивлением (шунтом). Изобразите схему генератора тока с внутренним шунтом, эквивалентного генератору с напряжением 120 В и внутренним сопротивлением

20Ом ).

8.3.20.Генератор с одной нагрузкой дает ток 4 А при напряжении 120 В, а с другой нагрузкой — ток 2 А при напряжении 160 В. Найдите параметры эквивалентных схем генератора тока и генератора напряжения.

8.3.21.Через аккумулятор под конец его зарядки течет ток 4 А. При этом напряжение на его клеммах 12,6 В. При разрядке того же аккумулятора током 6 А напряжение составляет 11,1 В. Найдите ток короткого замыкания.

8.3.22.При исследовании зависимости тока фотоэлемента от его освещенности используют микроамперметр, шкалы которого для измерений не хватает. Чтобы увеличить вдвое пределы измерения токов, к микроамперметру подсоединяют соответствующий шунт. После этого при том же освещении фотоэлемента изменилось не только отклонение стрелки прибора, но и сама сила тока. Объясните почему, и подтвердите свое объяснение расчетом. Фотоэлемент при посто-

) Напряжением генератора называют разность потенциалов на разомкнутом выходе генератора.

194

янном освещении можно считать генератором напряжения или генератором тока с фиксированными параметрами.

8.3.23. Сопротивления R1, R2, R3 в схеме, изображенной на рисунке, и ток I3, протекающий через сопротивление R3, известны. Определите токи через сопротивление R1 и R2 и напряжение на батарее.

8.3.24. В схеме, изображенной на рисунке, указаны сопротивления и ток через одно из сопротивлений. Определите токи через все сопротивления и напряжение генератора.

8.3.25. Используя симметрию схем, решите следующие задачи.

а. Ребра проволочного куба имеют одинаковое сопротивление r. Ток в одном ребре i. Определите разность потенциалов между узлами A и B, сопротивление между этими узлами и полный ток от A к B.

б. Определите токи в каждой стороне ячейки, полный ток от узла A к узлу B и полное сопротивление между этими узлами. Сторона каждой ячейки имеет сопротивление r, и ток, протекающий по одной из сторон, равен i.

в. Каждая сторона квадрата имеет сопротивление r. Определите сопротивление между узлами A и B. Чему равно сопротивление между узлами C и D? ♦ 8.3.26. При решении задач с несколькими источниками ЭДС можно сначала рассчитать токи, создаваемые каждым источником ЭДС, потом найти полный ток как сумму этих токов. Этот способ вполне законен, если при расчетах принимать во внимание внутреннее сопротивление источников, и называется методом суперпозиции. Определите, используя этот метод, ток между узлами A и B.

8.3.27 . а. Если в бесконечной схеме, состоящей из квадратных ячеек, через один узел A подводят ток i, а через соседний узел B отводят ток i, то какой ток идет по сопротивлению, соединяющему узлы A и B? Каково эквивалентное сопротивление цепи между этими узлами, если сопротивление стороны ячейки r?

б. Каково эквивалентное сопротивление между соседними узлами бесконечной кубической арматуры, если сопротивление ребра куба r?

в. Определите сопротивление между узлами A и B двумерной бесконечной сетки с ячейками в виде правильных шестиугольников и узлами C и A, расположенными через один соседний узел. Сторона каждой ячейки имеет сопротивление r.

8.3.28.Две батареи с ЭДС E1 = 20 В, E2 = 30 В и внутренними сопротив-

лениями соответственно r1 = 4 Ом, r2 = 60 Ом соединены параллельно. Каковы параметры E и r генератора, которым можно заменить батареи без изменения тока в нагрузке?

195

8.3.29.Две батареи с одинаковым внутренним сопротивлением соединены так, что ЭДС образовавшегося источника напряжения равна E. ЭДС одной из батарей (3/2)E. Нарисуйте все возможные схемы соединений. Для каждой из схем определите ЭДС второй батареи.

8.3.30.Три одинаковые батареи, соединенные параллельно, подключены к внешнему сопротивлению. Как изменится ток через это сопротивление, если переключить полярность одной из батарей?

8.3.31. Что покажет вольтметр, если генераторы одинаковы? Какой ток идет в цепи, если напряжение каждого генератора 1,5 В, а внутреннее сопротивление

2 Ом?

8.3.32. Найдите показания вольтметра, если внутреннее сопротивление одной батареи 3 Ом, а другой 1 Ом. ЭДС каждой батареи 1,5 В.

8.3.33. Электроплитка имеет три секции с одинаковым сопротивлением. При параллельном их соединении вода в чайнике закипает через 6 мин. Через какое время закипит вода той же массы и той же начальной температуры при соединении секций, как показано на рисунке?

8.3.34.Имеется проволока с сопротивлением R, через которую можно без риска ее пережечь пропускать ток, не превышающий I. Какую наибольшую мощность может иметь электрический нагреватель, изготовленный из этой проволоки, при включении в сеть с напряжением V IR? Проволоку можно разрезать на куски и соединять последовательно и параллельно.

8.3.35.Две электроплитки, соединенные в цепь параллельно, потребляют мощность N. Какую мощность будут потреблять эти электроплитки, включенные последовательно, если одна из электроплиток потребляет мощность N0?

8.3.36.В старой аккумуляторной батарее, состоящей из n последовательно соединенных аккумуляторов с внутренним сопротивлением r, внутреннее сопротивление одного из аккумуляторов резко возросло до 10 r. Считая ЭДС всех аккумуляторов одинаковой, определите, при каком сопротивлении нагрузки мощ-

196

ность, выделяемая на ней, не изменится при коротком замыкании поврежденного аккумулятора.

8.3.37.Аккумулятор подключен один раз к внешней цепи с сопротивлени-

ем R1, другой раз — с R2. При этом количество теплоты, выделяющейся во внешней цепи в единицу времени, одинаково. Определите внутреннее сопротивление аккумулятора.

8.3.38.Сравните напряжение на клеммах, а также мощность, выделяемую во внешней цепи батареей из 50 элементов, соединенных последовательно и имеющих каждый сопротивление 0,2 Ом и ЭДС 2 В, если сопротивление внешней цепи 0,2 Ом, и электрофорной машиной, создающей на шаровых кондукторах разность

потенциалов 100 кВ и обладающей внутренним сопротивлением 108 Ом, если сопротивлением внешней цепи 105 Ом. Как изменится ток и мощность во внешней цепи, если сопротивление ее удвоится?

8.3.39.От источника напряжения 10 кВ требуется передать на расстояние 5 км мощность 500 кВт; допустимая потеря напряжения в проводах 1 %. Каково минимальное сечение медного провода? Во сколько раз следует повысить напряжение источника, чтобы снизить потери мощности в 100 раз в той же линии при передаче той же мощности?

8.3.40.Как зависит мощность генератора, выделяемая на внутреннем сопротивлении, от тока I? Напряжение генератора E, внутреннее сопротивление r. Какому сопротивлению соответствует максимальная мощность?

8.3.41.Какую наибольшую мощность можно получить от генератора с напряжением 100 В и внутренним сопротивлением 20 Ом? Какую мощность можно получить от того же генератора при КПД 80 %? Если максимальный допустимый ток через генератор составляет 0,1 от тока короткого замыкания, то какую наибольшую мощность можно получить от генератора, не опасаясь его порчи?

8.3.42 . В термостат нужно подводить тепло с посто-

янной скоростью. Во время опыта в нем изменяется температура, что вызывает изменение сопротивления нагревательной спирали. Нужно, чтобы выделяемая на сопротивлении спирали r мощность почти не менялась при малых изменениях r. Постройте график зависимости мощности от r и определите, используя этот график, при каком соотношении R и r достигается желаемая нечувствительность мощности к изменению r.

8.3.43.Зарядка аккумулятора с ЭДС E осуществляется зарядной станцией, напряжение в сети которой V . Внутреннее сопротивление аккумулятора r. Определите полезную мощность, расходуемую на зарядку аккумулятора, и мощность, идущую на выделение тепла в нем. Превышает ли полезная мощность аккумулятора тепловую? Почему при быстрой зарядке аккумулятора нужно специально заботиться об отводе тепла?

8.3.44. Батарея с ЭДС 4 В и внутренним сопротивлением 1 Ом входит в состав неизвестной цепи. К полюсам батареи подключен вольтметр, он показывает напряжение 6 В. Определите количество теплоты, выделяющейся в единицу времени на внутреннем сопротивлении батареи.

8.3.45.В сферическом конденсаторе емкости C поддерживается постоянное напряжение V . Определите количество теплоты, выделяющейся в единицу времени на конденсаторе, если удельная проводимость среды, заполняющей конденсатор, λ, а ее диэлектрическая проницаемость ε ≈ 1.

8.3.46. Зонд, представляющий собой медную сетку, заземлен через сопротивление R и помещен в пучок электронов, скорость которых на большом расстоянии от зонда равна v. Определите количество теплоты, выделяющейся в единицу времени при бомбардировке зонда электронами, если ток заземления равен I.

13

197

♦ 8.3.47. Шар радиуса a через сопротивление R соединен с землей. Из бесконечности на него со скоростью v налетает пучок электронов, число частиц в единице объема которого ne. Определите предельный заряд шара. Считать скорость частиц большой (подумайте, по сравнению с какой величиной).

8.3.48 . Тепловая мощность спирали электроплитки линейно зависит от разности температур спирали и комнатного воздуха: N = κ(T −T0). Сопротивление спирали тоже линейно зависит от этой разности: R = R0[1 + α(T −T0)], где R0 — сопротивление спирали при комнатной температуре. До какой температуры нагреется спираль при пропускании через нее тока I?

§8.4. Конденсаторы и нелинейные элементы

вэлектрических цепях

8.4.1. Схемы цепей постоянного тока с конденсаторами даны на рисунке. а. Определите заряд конденсатора емкости 4 мкФ в стационарном режиме. б. Чему равно напряжение между точками A и B в стационарном режиме?

Что покажет вольтметр с внутренним сопротивлением 5 кОм, если его подключить к точкам A и B?

в. Определите стационарное напряжение на всех конденсаторах, если все сопротивления одинаковы.

♦ 8.4.2. К закрепленным внешним пластинам подключен источник эталонного напряжения V0. Измеряемое напряжение V подается на нижнюю внешнюю пластину и подвижную внутреннюю, имеющую ту же площадь, что и внешние пластины. Подвижную пластину перемещают в зазоре, пока действующая на нее электрическая сила не обратится в нуль, и измеряют расстояние x от нее до нижней внешней пластины. Найдите V , если расстояние между внешними пластинами l, а размеры пластин много больше этого расстояния. Как изменить схему подключения, чтобы измерять напряжения V > V0?

198

♦ 8.4.3. Для измерения напряжения применяются вольтметры двух типов: электромагнитные, измеряющие напряжение по току, проходящему через рамку прибора, и электростатические, грубая схема которых дана на рисунке. Через изолирующую пробку к двум параллельным пластинам подходит провод. Пластины удерживаются на месте пружиной жесткости k. Потенциал проводящей коробочки ϕB. Определите потенциал ϕA, если растяжение пружины равно x. В нерастянутом состоянии пружины расстояние от пластин до стенок коробочки l; площадь пластин S l2, x2.

8.4.4. Определите разность потенциалов между точками A и B. Каким вольтметром ее следует измерять? Какие заряды будут на конденсаторах при присоединении электромагнитного вольтметра? Почему электромагнитный вольтметр тем лучше, чем больше его внутреннее сопротивление, а электростатический вольтметр — чем меньше его емкость?

8.4.5 . Найдите количество теплоты, выделившейся на каждом сопротивлении после замыкания ключа. Один конденсатор вначале был заряжен до напряжения V , а второй не был заряжен.

8.4.6 . Найдите количество теплоты, выделившейся на сопротивлении, если при поочередном изменении емкости конденсаторов от C до C/2 затрачивается работа A. Первоначальный заряд каждого конденсатора q.

8.4.7. Какой заряд протечет через гальванометр после замыкания ключа? Какое количество теплоты выделится на сопротивлении?

8.4.8. Диод имеет вольт-амперную характеристику, изображенную на ри-

сунке. При напряжении V0 диод открывается. Конденсатор вначале не заряжен. Какое количество теплоты выделится на сопротивлении после замыкания ключа?

8.4.9. Какое количество химической энергии запасается в аккумуляторе после замыкания ключа в электрической цепи, изображенной на рисунке? Какое количество теплоты выделяется при этом?

8.4.10.Батарея с ЭДС E состоит из n последовательно соединенных одинаковых элементов. Как нужно заряжать конденсатор емкости C, чтобы потери составляли наименьшую возможную долю запасенной энергии? Какова эта доля?

199

8.4.11 . Начальные емкость и заряд конденсатора C и q. Емкость конденсатора начинают изменять со временем так, что ток в цепи остается постоянным и равным I. Вычислите мощность, потребляемую от генератора, и сравните ее с мощностью, поглощаемой конденсатором. Почему сравниваемые величины различны?

8.4.12. В цепи течет постоянный ток. Ключ размыкают. Через какое время заряд на конденсаторе изменится на 1/1000 первоначальной величины?

8.4.13 . Ключ замыкают поочередно с каждым из контактов на очень малые одинаковые промежутки времени. Изменение заряда конденсатора, происходящее за время каждого включения, очень мал´о. Какой заряд окажется на конденсаторе после большого числа переключений? Определите заряд конденсатора в случае, когда время, в течение которого замкнута первая цепь, в k раз меньше времени, в течение которого замкнута вторая цепь.

♦ 8.4.14 . На вход схемы подаются периодически повторяющиеся прямоугольные импульсы напряжения V0. Продолжительность импульса τ, период повторения T . Импульсы подаются через диод, который можно считать идеальным ключом. Определите напряжение, установившееся на конденсаторе, если за каждый период напряжение на нем изменится очень мало.

8.4.15 . Конденсатор емкости C, заряженный до напряжения V0, после замыкания ключа разряжается через сопротивление R. Как связана скорость изменения напряжения на конденсаторе dV/dt с напряжением на нем? Чему равны напряжение на конденсаторе и ток в цепи через время τ после замыкания ключа?

8.4.16. Включение неоновой лампы осуществляется с помощью схемы, показанной на рисунке. После замыкания ключа конденсатор начнет заряжаться. Когда напряжение на конденсаторе достигнет некоторого значения V , лампа загорится. Минимальное напряжение на лампе, при котором она еще горит, 80 В; при этом ток через лампу 1 мА. ЭДС батареи 120 В, 80 В < V < 120 В. При каком сопротивлении лампа будет стационарно гореть (не будет гаснуть)?

200

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]