Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Savchenko_O_Ya__FMSh_NGU__Zadachi_po_fizike

.pdf
Скачиваний:
2973
Добавлен:
28.03.2016
Размер:
5.26 Mб
Скачать

♦ 13.5.5. а. γ-Квант электромагнитного излучения частоты ν, столкнувшись с неподвижной частицей, начал двигаться под углом θ к первоначальному направлению. При этом частота кванта уменьшилась на ν ν. Определите массу этой частицы.

б. Фотон частоты ν, столкнувшись с неподвижным электроном, начинает двигаться под углом θ к первоначальному на-

правлению. Определите изменение частоты фотона, если hν mec2.

13.5.6 . Атомы, летящие со скоростью v, испускают в направлении своего движения фотоны с частотой ν. Какова частота фотонов, испускаемых в направлении: а) противоположном направлению движения атомов; б) перпендикулярном направлению движения атомов? Импульс фотона много меньше импульса атома.

13.5.7.Свет, излучаемый с поверхности звезды, приходит к наблюдателю

сменьшей, чем при излучении, частотой. Изменение частоты тем больше, чем массивнее звезда и меньше ее радиус. Чем объясняется этот эффект? Почему его называют красным смещением?

13.5.8.Определите красное смещение для звезды массы M и радиуса R, если частота света на поверхности звезды равна ν. Оцените красное смещение для Солнца в видимой области его излучения. Какие эффекты мешают обнаружить красное смещение в излучении Солнца?

♦ 13.5.9 . Большие массы вещества во Вселенной могут фокусировать свет от удаленных объектов, образуя «гравитационную линзу». Оцените фокусное расстояние шаровой галактики радиуса R ≈ 20 000 пк и массы M ≈ 3 · 1011 MС (где MС — масса Солнца), считая, что масса в галактике распределена равномерно.

17

261

Глава 14

Специальная теория относительности

§ 14.1. Постоянство скорости света. Сложение скоростей

14.1.1. Отраженный от самолета радиосигнал вернулся к локатору через 10−4 с. На каком расстоянии находился самолет от локатора в момент отражения радиосигнала?

14.1.2. Через 10−8 с после пролета π0-мезона через счетчик A счетчики A и B

зафиксировали γ-кванты, которые возникли при распаде π0-мезона: π0 → γ + γ.

0

14.1.3. Под каким углом к горизонту виден светящийся предмет, движущийся горизонтально со скоростью βc в момент, когда находится над наблюдателем? ♦ 14.1.4 . По наблюдениям с Земли свет далекой звезды падает на Землю под углом α к направлению ее движения, когда Земля приближается к звезде с наибольшей скоростью. На сколько изменится этот угол, когда скорость Земли изменит свое направление на противоположное?

♦ 14.1.5. С первой космической станции на вторую станцию, неподвижную относительно первой, были направлены одновременно испытательный зонд и свето-

262

вой сигнал. Отразившись от второй станции, затем от первой, световой сигнал вернулся на вторую станцию, когда на нее прибыл космический зонд. Какую скорость зонда относительно станции зафиксируют наблюдатели на станциях? Какую относительную скорость зафиксирует аппаратура зонда?

14.1.6 . Решите задачу 14.1.5 в случае, когда относительная скорость второй станции по наблюдениям с первой станции равна v. Какую относительную скорость имеет первая станция по наблюдениям со второй?

14.1.7 . По линии, соединяющей две неподвижные друг относительно друга станции, со скоростью v относительно станций двигался космический корабль. «Станции находились на одинаковом расстоянии от нашего корабля, когда на них одновременно отразился наш световой сигнал, так как световые сигналы были отправлены одновременно на станции и вернулись они после отражения от станций тоже одновременно», — утверждает наблюдатель с корабля. Сотрудники же станции наблюдали, что сигналы отразились от станций в разное время. Как объяснить эти разногласия? Какую разницу во временах отражения наблюдали сотрудники станции, если расстояние между станциями (в их системе) равно l? На каких расстояниях они фиксировали корабль в моменты отражений сигналов от станций?

14.1.8.Самолет и ракета движутся по одной прямой и в одном направлении. Скорость самолета βc. С самолета испускаются световые импульсы через равные интервалы, которые, отразившись от ракеты, приходят на самолет через интервалы, в K раз длиннее интервалов испускаемых импульсов. Определите скорость ракеты относительно самолета по наблюдениям с самолета и по наблюдениям с Земли.

14.1.9.«. . . Космический объект приближался к Земле. Навстречу ему мчалась самая быстрая космическая лаборатория. “Какова скорость сближения объекта и лаборатории?” — запросил с Земли генерал, руководитель встречи. “В системе Земли или нашей лаборатории?” — отозвался оператор лаборатории. “Какая разница”, — ответил генерал. “Эти скорости уже отличаются на 0,01 %, — неслось из космоса. — Сейчас мы достигли скорости сближения ровно 100 000 км/с в нашей системе и больше мы ее не меняем”. “Как измеряете скорость?” — спросил генерал. “Так же, как и вы, мы установили пассивную связь с объектом. Радарный импульс постоянно курсирует между нами и объектом, отражаясь попеременно то от нашей лаборатории, то от объекта. Скорость сближения определяется по изменению времени возвращения импульса”. “Это верно, когда радарный импульс и удаляется, и приближается к лаборатории со скоростью, равной скорости света, — подумал генерал. — Тогда скорость приближения объекта определяется только отношением двух соседних времен. Но

уних не так. Когда они догоняют отраженный импульс, скорость импульса c уменьшается на величину скорости лаборатории и на столько же увеличивается, когда импульс летит навстречу”. Неожиданно для себя генерал спросил у оператора: “Какая скорость сближения получилась бы у вас, если бы мы сообщили с Земли наблюдаемые нами скорости импульса по отношению к лаборатории и вы воспользовались бы этими величинами для расчета скорости объекта по времени

263

возвращения импульса? Наверняка, ту же самую, что мы видели с Земли”. “Да, генерал,” — со скоростью света полетел ответ на Землю. У генерала мелькнула мысль: “Лукавят физики. Просто не могут измерить скорость импульса. Нет масштаба. И принимают ее равной скорости света. Отсюда — все несовпадения”». Этот отрывок из еще неопубликованного научно-фантастического рассказа вызвал следующие вопросы. Насколько прав генерал? Чему равна скорость объекта и лаборатории в системе «Земля»?

♦ 14.1.10 . а. По наблюдениям с Земли скорости двух космических кораблей, летящих навстречу друг другу, равны v и u. Покажите, что относительная скорость одного корабля по наблюдениям с другого определяется формулой

v1 = (v + u)/(I + vu/c2).

б. По наблюдениям с Земли космический корабль удаляется от нее со скоростью v. В направлении движения с корабля был выброшен зонд. По наблюдениям с корабля зонд движется относительно корабля со скоростью u. Докажите, что наблюдаемая с Земли скорость удаления зонда от Земли равна

(v + u)/(I + vu/c2).

При решении задач используйте постоянство величины скорости света в разных

14.1.11.На фотонной ракете, летящей со скоростью 225 000 км/с относительно Земли, установлен ускоритель, разгоняющий электроны до скорости 240 000 км/с относительно ракеты в направлении ее движения. Какова скорость этих электронов в системе «Земля»?

14.1.12.Найти скорость распространения света относительно покоящегося наблюдателя, если луч света движется в среде с показателем преломления n, которая, в свою очередь, движется относительно наблюдателя со скоростью v в направлении распространения света.

14.1.13. Стеклянный брусок длины l движется в продольном направлении со скоростью v. Передний торец бруска посеребрен. Сколько времени по часам неподвижного наблюдателя потребуется свету, входящему в брусок через задний торец, чтобы пройти по бруску, отразиться от посеребренного торца и выйти из бруска? Коэффициент преломления стекла n.

264

♦ 14.1.14 . Лодочник под мостом уронил в воду багор. Через время τ, находясь на расстоянии L от моста, он обнаружил потерю и, повернув назад, догнал багор на расстоянии l от моста. Время и расстояния приведены в системе «берег». Какова скорость реки? Получите релятивистский ответ и из него нерелятивистское приближение.

14.1.15.Движущееся ядро распадается на два одинаковых осколка. Скорость осколка в направлении движения v, в противоположном направлении u. Определите скорость ядра.

14.1.16.Скорость заряженной частицы v. Определите, во сколько раз изменится скорость этой частицы после встречи с электрическим полем, движущимся навстречу частице со скоростью u, если после этой встречи частица отразилась

внаправлении движения поля?

♦ 14.1.17. Мимо Земли со скоростью v пролетает ракета. Посланный с Земли световой сигнал отразился от ракеты, когда она находилась от Земли на минимальном расстоянии l. Определите время возвращения сигнала на Землю по

14.1.18.Если в какой-либо системе отсчета фиксируются события, например радиоактивный распад, рассеяние частиц, отражение света от зеркала, то эти явления будут фиксироваться в любой системе отсчета. Покажите, пользуясь этим, что отношение времен между событиями, происходящими в одном и том же месте для какой-либо системы, одинаково в любой системе отсчета.

14.1.19.Покажите, что в движущейся со скоростью βc ракете поперечные размеры не меняются.

14.1.20. В ракете время измеряется световыми ходиками, состоящими из двух зеркал, расположенных на расстоянии l друг от друга. Число колебаний светового зайчика между этими зеркалами отсчитывает время в этой ракете. Как изменится ход этих часов по наблюдениям на станции, относительно которой ракета движется со скоростью βc? Покажите, что расстояние между зеркалами,

раз?

βc,

уменьшится в

γ = 1/p

1 − β

 

если ось ходиков направлена вдоль скорости

 

 

 

2

14.1.21. Во сколько раз изменится скорость частицы v при переходе в систему отсчета, движущуюся со скоростью u, если v u?

265

♦ 14.1.22. На рисунке изображены векторы скоростей шести зайцев, выпущенных старым Мазаем, в системе отсчета, неподвижной относительно Мазая. Нарисуйте скорости зайцев и Мазая в системе отсчета, неподвижной относительно

14.1.23. Неподвижный радар испускает радиальные электромагнитные волны длиной λ. Изобразите эти волны для радара, движущегося со скоростью v = 4c/5. Как изменится длина волны в направлении движения радара? В противоположном направлении? Под углом π/2 к направлению движения?

14.1.24 . π0-Мезоны, имеющие одинаковую скорость βc, распадаются на γ- кванты: π0 → γ + γ. Какая часть γ-квантов движется под углами к скорости βc, меньшими π/2?

♦ 14.1.25 . Двигаясь по круговой дорожке накопителя со скоростью, близкой к скорости света, электрон испускает свет в основном в направлении движения в области малого угла. Оцените этот угол, если скорость электрона на меньше скорости света, c.

♦ 14.1.26 . Зеркало двигается со скоростью βc перпендикулярно своей плоскости. Под каким углом отразится от этого зеркала фотон, падающий на зеркало

14.1.27. Для встречи с космическим кораблем, летящим со скоростью v, под углом α к направлению движения корабля запускается со скоростью u ракета связи. Определите скорость ракеты в системе отсчета корабля.

14.1.28 . Угол отклонения протона, имеющего скорость βc, при столкновении с другим протоном, летящим ему навстречу с той же скоростью, равен α. Определите угол отклонения первого протона в системе отсчета, в которой другой протон до столкновения неподвижен.

266

§14.2. Замедление времени, сокращение размеров тел в движущихся системах. Преобразование Лоренца

14.2.1.Во сколько раз замедлится ход времени в космическом корабле, летящем со скоростью 240 000 км/с?

14.2.2.Время жизни неподвижной частицы τ. С какой скоростью должна двигаться эта частица, чтобы пролететь расстояние l?

14.2.3.Хотя время жизни неподвижного µ-мезона мало — около 2 · 10−6 с, µ-мезоны, рожденные космическими лучами на высоте 30 км, достигают поверхности Земли. Определите верхний предел разницы между скоростью света и скоростью π-мезонов.

14.2.4. Протоны ускоряются напряжением 30 кВ, а затем, проходя газовую мишень, частично превращаются (практически не тормозясь), захватывая электроны, в быстрые нейтральные атомы водорода. Частота неподвижных атомов

водорода равна 3,2 · 1015 Гц. На сколько изменится частота электромагнитных волн, излучаемых движущимися атомами водорода перпендикулярно направлению их движения?

14.2.5 . Как изменится частота плоской электромагнитной волны при нормальном отражении ее от зеркала, движущегося со скоростью βc навстречу волне? Частота падающей волны ν.

♦ 14.2.6 . Определите разницу частот плоской волны вне и внутри диэлектрика, плоская граница которого движется навстречу волне со скоростью βc. Частота волны вне диэлектрика ν, коэффициент преломления волны в диэлектрике n.

267

14.2.7. π0-Мезон пролетает со скоростью v от места своего рождения до места распада расстояние l. Сколько времени прошло между этими событиями в системе протона, летящего вслед за π0-мезоном со скоростью u?

14.2.8.Через какое время фотон перелетит галактику диаметром 105 световых лет по наблюдениям с космического корабля, движущегося вслед за фотоном со скоростью, равной 0,6 скорости света?

14.2.9.В центре стержня находится лампочка. В системе отсчета, в которой стержень покоится, свет от лампочки дойдет до концов стержня одновременно,

ав системе отсчета, в которой стержень движется в продольном направлении

 

 

 

 

со скоростью v, свет придет на дальний конец на lv/c2

1 − v2/c2 позже, чем на

ближний; l — собственная длина стержня (длина

стержня в системе отсчета в

p

,

которой стержень неподвижен). Докажите это.

♦ 14.2.10. При продольной скорости βc длина карандаша равна длине пенала l. Когда карандаш влетает в пенал, крышка пенала захлопывается, а карандаш мгновенно останавливается. Опишите этот процесс в системе карандаша.

♦ 14.2.11 . Между двумя линзами сформирован пучок света с круглым сечением радиуса R, направленным вдоль оси x. Вдоль оси y движется диск того же радиуса со скоростью v. Плоскость диска перпендикулярна оси x. В лабораторной системе, в которой линзы неподвижны, движущийся диск сокращается в направлении движения и поэтому не может перекрыть пучок света. Для наблюдателя на диске сокращается сечение пучка и, казалось бы, должен наблюдаться момент полной экранировки света. Объясните этот парадокс.

14.2.12 . Параллельный полу стержень падает на пол со скоростью βc. Под каким углом к полу падает этот стержень в системе отсчета, которая движется параллельно полу со скоростью β1c?

14.2.13. а . По наблюдениям с Земли в движущемся со скоростью v космическом корабле величина скорости света не изменилась, расстояния в направлении

p

движения сократились в γ = 1/ 1 − (v/c)2 раз, а в направлении, перпендикулярном движению, — не изменились. События, одновременные в неподвижном корабле, стали происходить в разные моменты времени. Разность времен t = γxv/c2, где x — разность координат в направлении движения корабля. Докажите, что все эти эффекты следуют из преобразования Лоренца

x0 = (x

vt)γ,

y0 = y, z0 = z, t0 = (t

vx/c2)γ,

 

 

 

 

268

где x, y, z и t — координаты и время, описывающие явления в неподвижной системе; x0, y0, z0 и t0 — координаты и время, описывающие явление в системе, движущейся со скоростью v.

б. Получите обратное преобразование Лоренца: определите x, y, z, t через x0, y0, z0, t0 из преобразования Лоренца, которое приведено в п. а. Покажите, что полученное преобразование подтверждает принцип относительности Галилея.

14.2.14.Преобразование Лоренца дает возможность узнать, что произойдет, если мы будем наблюдать за каким-либо явлением, двигаясь относительно объекта, носителя явления, со скоростью v, или если объект движется относительно нас со скоростью v, при условии, что нам известно, как происходит явление, когда объект неподвижен. Поэтому в дальнейшем часто будет использоваться следующая постановка вопроса. В неподвижной системе описывается явление. Как будет происходить это явление, если объект, носитель явления, движется со скоростью v? Ответ предполагает описание этого явления в системе отсчета, которая движется со скоростью −v относительно системы, в которой описано явление. Это эквивалентно описанию этого явления в случае движения объекта, носителя явления, со скоростью v относительно неподвижного наблюдателя. Второй вариант интересен тем, что его можно расширить на несколько изолированных объектов, движущихся с разными скоростями. Решите, используя это, следующую задачу. Наблюдательная станция зафиксировала световые сигналы от двух ракет, движущихся по направлению к станции по одной прямой. Частоты

сигналов, зарегистрированных станцией, ν1 и ν2. Частота сигналов неподвижных ракет равна ν0. С какой скоростью сближаются ракеты?

14.2.15.Используя преобразование Лоренца, решите задачи 14.2.5 и 14.2.6 .

14.2.16.От неподвижного атома свет распространяется под углом α к оси z. Частота света ν. Под каким углом будет распространяться свет при движении атома со скоростью βc вдоль оси z? Как изменится частота света?

14.2.17.По направлению к Земле со скоростью v движется космический корабль. Когда измеренное с Земли расстояние до корабля было l, с Земли запустили ракету. Через какое время после запуска встретится ракета с кораблем

по наблюдениям с Земли и с корабля, если ракета двигалась навстречу кораблю: а) со скоростью u? б ) с ускорением a?

14.2.18.а. По наблюдениям космонавтов, тело внутри космического корабля совершает гармоническое движение с частотой ω/(2π) и амплитудой A вдоль оси корабля z = A sin ωt. Как будет связана осевая координата этого тела со временем по наблюдениям с Земли, если корабль удаляется от Земли со скоростью βc?

б. Решите задачу пункта а в случае, если тело внутри корабля, по наблюдениям космонавтов, совершало такое же гармоническое движение поперек оси корабля, y = A sin ωt.

§ 14.3. Преобразование электрического

имагнитного полей )

14.3.1.Определите плотность поверхностного заряда, электрическое и магнитное поля в конденсаторе, движущемся со скоростью βc параллельно своим пластинам, если в системе отсчета, движущейся вместе с конденсатором, электрическая напряженность равна E. (Элементарный электрический заряд частиц при движении системы не меняется, но меняется расстояние между зарядами.)

14.3.2 . Решите задачу 14.3.1 в случае, когда скорость βc направлена под углом α к пластинам конденсатора. Как связаны между собой электрическая напряженность и магнитная индукция в этом конденсаторе?

) В этом параграфе используется система единиц СГС.

269

14.3.3. Найдите электрическое и магнитное поля равномерно заряженной

нити движущейся в продольном направлении со скоростью ~ если в системе

, βc,

отсчета, в которой нить неподвижна, плотность заряда на единицу длины нити равна ρ.

14.3.4. а. В прямом неподвижном проводнике скорость электронов равна

~ а скорость протонов рана нулю Плотности объемного заряда электронов

βc, .

и ионов равны ±ρ. Как изменится плотность электронов и ионов при движении проводника со скоростью βc?

б. Во сколько раз изменится индукция магнитного поля в движущемся проводнике?

в. Как связаны между собой индукция магнитного поля в движущемся про-

~ ~

воднике B с электрической напряженностью E?

14.3.5 . Решите задачу 14.3.4 в случае, если проводник будет двигаться со

~ ~

скоростью β1c, β1 = kβ.

14.3.6. а. Пусть имеются неподвижный заряд и магнитное поле, которое на

этот заряд не действует. При движении ) этого состояния со скоростью βc заряд будет двигаться со скоростью βc. Сила, действующая на заряд в новом состоянии, равна нулю из-за того, что кроме магнитного поля на заряд действует возникающее при сносе электрическое поле. Определите, пользуясь условием равновесия сил, действующих на заряд, связь в новом состоянии индукции магнитного поля

~ ~

B с электрической напряженностью E.

б. Какое электрическое поле возникает при движении со скоростью βc магнитного поля с индукцией B, если β 1?

в На рисунке изображен постоянный магнит с магнитной индукцией ~ дви

. B, -

жущийся как утверждает экспериментатор мимо него со скоростью ~ так

, 1, βc,

как он обнаружил по действию на заряд q электрическое поле напряженности

~

~

~

E = −[β

× B], которое должно возникнуть у движущегося магнита. Однако экс-

периментатор 2, сидящий на магните, утверждает, что у этого магнита нет никакого электрического поля и он неподвижен. Сила же, действующая на заряд q, связана не с электрическим, а с магнитным полем. «Экспериментатор 1, — утверждает экспериментатор 2, — вместе со своим зарядом движется в магнитном поле

~~

синдукцией B со скоростью βc. Поэтому на заряд действует сила не со стороны

~

~

~

электрического поля напряженности E = −[β

×B], а со стороны магнитного поля

индукции B».

Кто из них прав?

) Движением состояния со скоростью βc называется новое состояние, которое в системе отсчета, движущейся со скоростью βc относительно первоначальной системы отсчета, совпадает с первоначальным состоянием.

270

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]