Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Diss / 10

.pdf
Скачиваний:
143
Добавлен:
27.03.2016
Размер:
18.05 Mб
Скачать

Filtering and Extrapolation of Target Track Parameters Based on Radar Measure

183

Extrapolation of target track parameters is carried out in accordance with the hypothesis about the target straight-line movement, and the correlation matrix is extrapolated by the following rule:

Yexn = FnY n−1FnT ,

(5.152)

where

 

1

T0

0

0

 

 

Fn = F =

0

1

0

0

.

(5.153)

 

0

0

1

T0

 

 

 

0

0

0

1

 

 

Extrapolated polar coordinates are determined from the Cartesian coordinates by the following formulas:

 

ˆ

=

ˆ 2

 

ˆ2

,

 

 

(5.154)

 

rexn

xexn

+ yexn

 

 

 

 

 

 

yˆexn

 

 

ˆ

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

A = arctan

 

 

xˆexn

,

xexn

> 0,

yexn

> 0,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

ˆ

 

 

βexn

 

 

 

 

 

 

< 0,

> 0,

(5.155)

= π − A,

 

 

 

 

 

xexn

yexn

 

 

 

 

 

 

 

ˆ

 

ˆ

 

 

 

π − A,

 

 

 

 

 

< 0,

< 0,

 

 

 

 

 

 

 

xexn

yexn

 

 

 

 

 

 

 

 

ˆ

 

ˆ

 

 

 

2π − A,

 

 

 

 

 

> 0,

< 0.

 

 

 

 

 

 

 

xexn

yexn

 

 

 

 

 

 

 

 

 

 

 

 

 

The vector of measured target track parameter coordinates and the error correlation matrix take the following form:

Yn =

.rn

 

 

 

(5.156)

 

 

 

.βn .

 

 

 

and

 

 

 

 

Rn =

 

σr2n

0

 

.

(5.157)

 

 

 

0

σr2n

 

 

 

 

To establish a relationship between the measured coordinates and estimated target track parameters, we use the linearized operator:

 

 

r

 

0

 

r

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

x

 

y

 

 

 

 

.

(5.158)

 

 

 

 

 

 

 

 

 

 

∂β

 

 

 

 

 

 

 

∂β

0

0

 

 

 

 

 

 

 

 

x

y

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

x =xexn , y =yexn

 

 

 

 

 

 

 

 

 

 

 

184

Signal Processing in Radar Systems

This operator can be presented in the following form:

 

T

 

 

=

r

,

(5.159)

βT

 

 

 

where

UT =

U

0

U

0

and U = {r,β}.

(5.160)

 

x

 

y

 

 

 

Henceforward, the error correlation matrix Ψn of the target track parameter estimations is determined by n measurements. The matrix filter gain is determined in the following way:

Gn = Yn T Rn−1 = Yn

 

r β

 

wrn

0

.

(5.161)

 

 

0

wβn

 

 

 

 

 

 

By this reason, the vector of target track parameter estimations is determined by the following formula:

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ ˆ

+ Y n

 

 

 

wrn

0

 

rn

rexn

 

 

qn = qexn

r

β

 

0

wβn

 

 

 

ˆ

.

(5.162)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

βn

βexn

 

 

 

 

 

 

 

 

 

 

 

From this formula it is easy to obtain the final the case of n we obtain

xˆn = xˆexn + αrwrn (rn

where

expression for components of the vector θn. Thus, in

ˆ

ˆ

(5.163)

rexn ) + αβwβn

n − βexn ),

αr = Ψ11(n)

r

+ Ψ13(n)

r

;

(5.164)

x

y

 

 

 

 

αβ = Ψ11(n)

∂β

+ Ψ13(n)

∂β .

(5.165)

 

x

 

y

 

 

Other components are determined by analogous formulas.

From the earlier discussion and the relationships obtained, it follows that there is a statistical dependence between estimations of target track parameters by all coordinates in the considered filter. This fact poses difficulties in obtaining the target track parameter estimations and leads to tightened requirements for computer subsystems of a CRS. We can decrease the computer cost by refraining from optimal filtering of target track parameters that makes the filter simple. In particular, a primitive simplification is a rejection of joint filtering of target track parameters and passage to individual filtering of Cartesian coordinates with subsequent transformation of

Filtering and Extrapolation of Target Track Parameters Based on Radar Measure

185

obtained target track parameter estimation coordinates to the polar coordinate system. The procedure of simplified filtering follows.

Each pair of measured coordinates rn and βn is transformed to the Cartesian coordinate system before filtering using the following formulas:

xn = rn cosβn and yn = rn sin βn.

(5.166)

The obtained values xn and yn are considered as independent measured coordinates with the variances of measurement errors:

σ2xn

= cos2 βnσr2n

+ rn2 sin2

βnσβ2n ,

(5.167)

σ2yn

= sin2 βnσr2n

+ rn2 cos2

βnσβ2n .

(5.168)

Each Cartesian coordinate is filtered independently in accordance with the adopted hypothesis of Cartesian coordinate changing. The problems of detection or definition of statistical parameters of target maneuver by each coordinate are solved simultaneously.

Extrapolated values of Cartesian coordinates are transformed into the polar coordinate system by the formulas (5.154) and (5.155).

Comparison of accuracy characteristics of optimal and simple filtering procedures with double transformation of coordinates is carried out by simulation. For example, the dependences of root-mean-square error magnitudes of target track azimuth coordinate versus the number of measurements (the target track is indicated in the right top corner) for optimal (curve 1) and simple (curve 2) filtering algorithms at rmin = 10 and 20 km are shown in Figure 5.9. From Figure 5.9, we see that in the case of a simple filter, accuracy deteriorates from 5–15% against the target range, course, speed, and the number of observers. At rmin < 10 km, this deterioration in accuracy is for about 30%. However, the computer cost is decreased approximately by one order.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

β

 

 

 

 

 

 

y

 

 

 

 

 

 

 

σβmes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.0

 

 

 

 

 

 

 

 

 

Vtg = 1000 m/s

 

0.9

 

 

 

 

 

 

 

 

rmin

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.8

 

 

 

 

 

 

 

 

β

 

 

 

 

 

0.7

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

0.5

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.4

1—optimal algorithm

 

 

 

 

 

 

 

 

 

0.3

2—simplified algorithm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.2

 

 

 

 

 

 

 

rmin = 10 km

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.1

 

 

 

 

 

 

 

rmin = 20 km

 

 

 

n

0

 

 

 

 

 

 

 

 

 

 

 

 

 

4

6

8

10

12

14

16

18

20

22

24

26

28

30

2

FIGURE 5.9  Root-mean-square errors of azimuth target track coordinate versus the number of measurements. Curve 1—τmin = 10 km; curve 2—τmin = 20 km.

186 Signal Processing in Radar Systems

5.6.3  Adaptive Filtering Algorithm Version Based on Bayesian Approach in Maneuvering Target

Under adaptive filtering, the linear dynamic system described by the state equation given by (5.144) is considered as the target track model. Target track distortions caused by a deliberate target maneuver are represented as a random process, the mean E(gmn) of which is changed step-wise taking a set of

fixed magnitudes (states) within the limits of range [gmmax , + gmmax ]. Transitions of a step-wise process from the state i to the state j are carried out with the probability Pij ≥ 0 defined by a priori data about the target maneuver. The time when the process is in the state i before transition into the state j is the random variable with arbitrary pdf p(ti). The mathematical model of this process is the semi-Markov random process. Distortions of the target track caused by a deliberate target maneuver and errors of intensity estimations of deliberate target maneuver are characterized by the random component ηn in an adaptive filtering algorithm. The matrices Φn, Γn, and Kn are considered as the known matrices.

Initially, we consider the Bayesian approach to design the adaptive filtering algorithm for the case of continuous distortion action gmn. As is well known, an optimal estimation of the parametric

vector θn at the quadratic loss can be defined from the following relationship:

 

ˆ

qn p(qn | {Y}n )dqn,

(5.169)

qn =

(Θ )

where

(Θ) is the space of possible values of estimated target track parameter

p(qn | {Y}n ) is the a posteriori pdf of the vector θn by data of n-dimensional sequence of measurements {Y}n

Under the presence of the distortion parameter gm, the a posteriori pdf of the vector θn can be written in the following form:

 

 

p(qn | {Y}n ) =

p(qn | gmn ,{Y}n ) p(gmn | {Y}n )dgmn,

 

(5.170)

 

 

 

(gm )

 

 

 

 

where (gm) is the range of possible values of the parameter of distortions. Consequently,

 

ˆ

qn

p(qn | gmn ,{Y}n ) p(gmn

| {Y}n )dgmn dqn =

ˆ

ˆ

,{Y}n )dgmn .

(5.171)

qn =

qn (gmn ) p(qn | gmn

 

(Θ )

(gm )

(gm )

 

 

 

 

Thus, the problem of estimating the vector θˆn is reduced to weight averaging the estimations qˆn (gmn ), which are the solution of the filtering problem at the fixed magnitudes of gmn. The estima-

tions qˆn (gmn) can be obtained in any way that minimizes the MMSE criterion including the recurrent linear filter or Kalman filter. The problem of optimal adaptive filtering will be solved when the a posteriori pdf p(gmn | {Y}n ) is determined at each step. Determination of this pdf by sample of measurements {Y}n and its employment with the purpose of obtaining the weight estimations is the main peculiarity of the adaptive filtering method considered.

In the case considered here, when the parametric disturbance takes only the fixed magnitudes gm j, j = −0.5m,…, −1, 0, 1,…, 0.5m, m is even, we obtain the following formula instead of (5.171):

ˆ

 

0.5m

 

=

qn (gm jn )P(gm jn | {Y}n ),

(5.172)

qmn

j= −0.5m

Filtering and Extrapolation of Target Track Parameters Based on Radar Measure

187

where P(g

|{Y} ) is the a posteriori probability of the event gm jn gm j by data of n measurements

m jn

n

{Y}n. To determine the a posteriori probability P(gm jn |{Y}n ), we use the Bayes rule, in accordance with which (5.17) we can write

P(gm jn | {Y}n ) = Pnj

=

 

P(gm jn | {Y}n−1) p(Yn | gm j,n−1 )

.

(5.173)

0.5m

 

 

 

 

 

 

P(gm jn |{Y}n−1) p(Yn | gm j,n−1 )

 

 

 

 

 

 

j= −0.5m

 

 

 

In this formula, P(g

|{Y}

) is the a priori probability of the parameter gm j at the nth step obtained

m jn

n−1

 

 

 

 

 

 

 

by (n − 1) measurements and computed by the formula

 

 

 

 

 

 

 

 

0.5m

 

 

 

 

P(gm jn | {Y}n−1) =

Pij P(gm j,n−1 | {Y}n−1),

 

(5.174)

 

 

 

 

 

i= −0.5m

 

 

 

where

 

 

 

 

 

 

 

 

 

 

Pij

= P(gmn

= gm j | gmn−1

= gmi )

 

(5.175)

is the conditional probability of the transition of disturbance process from the state i at the (n − 1)th step to the state j at the nth step; p(Yn | gm j,n−1 ) is the conditional pdf of observed magnitude of the coordinate Yn when the parametric disturbance at the previous (n − 1)th step takes the magnitude gm j. This pdf can be approximated by the normal Gaussian distribution with the mean determined by

ˆ

= Hn[Fn−1qn−1 + Gn−1gm j ]

(5.176)

Yexn, j

and the variance given by

σ2n = HnYexn HTn + σY2n .

(5.177)

Taking into consideration (5.177) and (5.178), we obtain the a posteriori probability in the following form:

 

 

0.5m

 

ˆ

ˆ

2

2

 

 

 

 

 

 

 

 

 

 

 

 

Pnj =

 

i

= −0.5m

Pij P(gmi,n−1 |{Y}n−1) exp

( Yn

Yexn, j

)

/2σn

 

 

.

(5.178)

0.5

 

 

0.5m

 

 

 

 

 

 

 

 

 

 

 

 

 

2

2

 

 

 

j= −0.5m

Pij P(gmi,n−1 |{Y}n−1) exp

(Yn Yexn, j ) /2σn

 

 

 

 

 

i= −0.5m

 

 

 

 

 

 

 

 

The magnitudes Pnj for each j are the weight coefficients at averaging of estimations of filtered target track parameters.

Henceforth, we assume that the target track parameters are filtered individually by each Cartesian coordinate of the target. Measured values of spherical coordinates are transformed into Cartesian coordinates outside the filter. Correlation of measure errors of the Cartesian coordinates is not taken into consideration. The Cartesian coordinates fixing the intensity gmx, gmy , and gmz of deliberate target maneuver are also considered as independent between each other and gmx = xm , gmy = ym , and gmz = zm. In the following, the equations of adaptive filtering algorithm applying to the Cartesian coordinate x are written in detailed form.

188

Step 1: Let at the (n − 1)th step be obtained n−1 the error correlation matrix of the target track

Signal Processing in Radar Systems

and xˆn−1—the estimations of target track parameters; parameter estimations takes the following form:

 

Yn −1

=

ψ11,(n −1)

ψ12,(n −1)

;

(5.179)

 

 

ψ 21,(n −1)

ψ 22,(n −1)

 

 

 

 

 

P(xm j,n−1 |{x}n−1)—the a posteriori

probabilities of

magnitudes

of the disturbance parameter

j = −0.5m,…, −1, 0, +1,…, 0.5m; σ2x

—the variance of random component disturbed the target track.

n−1

 

 

 

 

 

Step 2: Extrapolation of target track parameters for each possible magnitude of ¨xmj is carried out in accordance with the following formulas:

 

ˆ

ˆ

ˆ

2

 

 

 

 

;

xexnj

= xn−1

+ τex xn−1

+ 0.5τex xm j

 

ˆ

ˆ

 

 

 

(5.180)

 

 

 

 

 

 

 

 

 

 

 

xexnj

= xn−1

+ τex xm j .

 

 

 

Step 3: Elements of the error correlation matrix of extrapolation are defined by the following formulas:

ψ11

= ψ11,n−1

+ 2τexψ12,n−1 + τ2exψ 22,n−1 + 0.25τex4 σ2x

;

 

exn

 

 

 

 

 

 

 

 

 

 

 

 

n−1

 

ψ

12exn

= ψ

21exn

= ψ

12,n−1

+ τ

ex

ψ

22,n−1

+ 0.5τ3

σ2

;

(5.181)

 

 

 

 

 

 

ex

xn−1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ψ

22,n

= ψ

22,n−1

+ τ2

 

σ2

.

 

 

 

 

 

 

 

 

 

ex

xn−1

 

 

 

 

 

 

 

 

Step 4: Components of the filter gain vector at the nth step are defined in the following form:

 

 

ψ11,exn

 

−1

G1n =

 

 

 

 

 

= ψ11,exn zn

 

ψ11,exn

+

2

 

 

σ xn

;

 

 

ψ 21,exn

 

 

 

−1

G2n =

 

 

 

 

 

= ψ 21,exn zn

 

ψ11,exn

+

2

 

 

 

σ xn

 

 

where

 

 

 

 

 

 

 

z−1 =

 

1

,

 

 

 

ψ11,exn + σ2xn

σ2xn is the variance of errors under measuring the coordinate x at the nth step.n

(5.182)

(5.183)

Step 5: Elements of correlation matrix of errors of target track parameter estimation at the nth step are defined by the following formulas:

ψ

ψ

ψ

11,n = ψ11,exn zn−1σ2xn ;

 

 

12,n = ψ 21,n = ψ11,exn σ2xn ;

(5.184)

22,n = ψ 22,exn − ψ12,ex2

n zn−1.

 

Filtering and Extrapolation of Target Track Parameters Based on Radar Measure

189

Step 6: Estimations of filtered target track parameters for each discrete value of parametric disturbance are defined in the following form:

x

 

= x

 

+ γ (x x );

 

ˆ

nj

ˆ

exnj

 

1n

n

ˆ

exnj

 

 

ˆ

 

ˆ

 

+ γ

 

(x

 

xˆ

 

),

x

nj

= x

exnj

2n

n

exnj

 

 

 

 

 

 

 

where xn is the result of measuring the coordinate x at the nth step.

Step 7: The weight of discrete values of disturbance is defined as

 

 

 

0.5m

 

 

 

 

 

 

 

 

 

Pij P(xmi,n−1 |{Y}n−1)exp 0.5(xn xˆexnj )2 zn−1

 

 

 

 

|{Y}n ) =

i= −0.5m

 

 

 

 

 

 

 

 

 

 

 

.

P(xm jn

0.5m

0.5m

Pij P(xmi,n−1 |{Y}n−1)exp

 

xˆexnj )

 

 

j = −0.5m i= −0.5m

0.5(xn

2 zn−1

 

 

 

 

 

 

 

Step 8: The weight values of target track parameter estimations are defined as

 

 

 

 

 

 

 

0.5m

 

 

 

 

 

 

 

 

xˆn =

xˆnj P(xm jn |{Y}n );

 

 

 

 

 

 

 

 

 

j= −0.5m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

0.5m

 

 

 

 

 

 

 

 

xn =

xnj P(xm jn |{Y}n ).

 

 

 

 

 

 

 

 

 

j= −0.5m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 9: The weight value of discrete parametric disturbance at the nth step is defined as

ˆ

= xm j P(xm jn |{Y}n ).

xmn

(5.185)

(5.186)

(5.187)

(5.188)

j

Step 10: The weight variance of continuous disturbance at the nth step is defined as

2

 

ˆ

2

 

2

(5.189)

σmn

= (xm j

xmn

)

P(xm jn

|{Y}n) = σin,

j

where σ2in is the variance of inner fluctuation noise of the control subsystem.

A flowchart of the adaptive filter realizing the described system of equations is shown in Figure 5.10. The adaptive filter consists of (m + 1) Kalman filters connected in parallel, and each of them is tuned on one of possible discrete values of parametric disturbance. The resulting estimation of filtered target track parameters is defined as the weight summation of conditional estimations at the outputs of these elementary filters. The weight coefficients P(xmjn |{Y}n) are made more exact at each step, that is, after each measurement of the coordinate x using the recurrent formula (5.187). Blocks for computation of the correlation matrix Ψn of errors of target track parameter estimation and filter gain Gn are shared for all elementary filters. For this reason, a complexity of realization of the considered adaptive filter takes place owing to (m + 1) multiple computations of extrapolated and smoothed magnitudes of filtered target track parameters and computation of the weights P(xm jn |{Y}n ) at each step of updating the target information.

The adaptive filter designed based on the principle of weight of partial estimations can be simplified to carrying out the weight of extrapolated values only of filtered target track parameters, and using

190

Signal Processing in Radar Systems

 

 

 

 

 

Pij

 

 

 

 

 

 

2

 

δx2n

 

 

 

 

 

 

 

 

xmj

 

 

σ in

 

 

 

 

 

 

 

 

 

2

 

 

 

 

Gn , ψn

 

RAM

P(xm |{y}n–1)

 

RAM

 

 

σ m

 

 

 

 

 

 

x

mn

 

n

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xm

n

x

n

 

 

 

×

 

 

 

 

 

 

 

 

xn1–0.5m ; xn,–0.5m

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

, x

n

 

 

 

 

xexn1–0.5m

; xexn,–0.5m

 

 

 

 

n

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

.

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

.

 

 

 

 

 

 

 

 

 

 

 

×

.

 

 

 

 

 

 

 

 

 

 

 

 

.

Σ

 

RAM

 

 

 

 

 

 

xn,0 ; xn,0

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

.

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

; xexn,0

 

 

 

 

 

 

 

 

 

 

 

xexn,0

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

.

.

×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xn,0.5m ; xn,0.5m

 

 

 

 

 

 

 

 

 

 

 

 

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xmj

xexn,0.5m

; xexn,0.5m

 

 

 

 

 

 

 

 

 

FIGURE 5.10  Adaptive filter flowchart: general case.

this weight, to compute the filtered target track parameters by the usual (undivided) filter instead of weighting the output estimations of filtered target track parameters. The equation system of the simplified adaptive filter is different from the previous one by the fact that the extrapolated values of filtered target track parameters determined by (5.180) are averaged with the following weights:

 

 

= xˆexnj P(xm jn|{Y}n );

xˆexn

 

ˆ

j

(5.190)

 

ˆ

xexn

= xexnj

P(xm jn |{Y}n ).

 

 

 

 

 

 

j

 

After that, we can define more exactly the estimations of filtered target track parameters taking into consideration the nth coordinating measure using the well-known formulas for the Kalman filter. A flowchart of the simplified adaptive filter is shown in Figure 5.11. It consists of blocks for computation of the correlation matrix of errors Ψn, the filter gain Gn, and the probabilities P(xm jn |{Y}n )

that are shared by the filter as a whole; the block to compute the estimations x and ˆ of target

ˆn xn

track parameters; (m + 1)th blocks of target track parameter extrapolation for each fixed magnitude of acceleration mjn; the weight device to compute averaged extrapolated coordinates. From Figure 5.11, it is easy to understand the interaction of all blocks. Employment of adaptive filters allows us to decrease essentially the dynamic error of filtering the target track parameters within the limits of the target maneuver range. In doing so, when there is no target maneuver, the root-mean-square magnitude of random filtering error is slightly increased, on average 10%–15%.

The relative dynamic errors of filtering on the coordinate x by the adaptive filter (solid lines) and nonadaptive filter (dashed lines) with σ2x = 0.5g for the target track shown in the right top are presented in Figure 5.12. The target makes a maneuver with accelerations d1 = 4g and d1 = 6g, where g is the gravitational acceleration, moving with the constant velocity Vtg = 300 m/s. Maneuver is observed within the limits of six scanning periods of the radar antenna. In the case of the adaptive filter, x1 = −8g, x2 = 0, and x3 = 8g are considered as the discrete magnitudes of acceleration. As follows from Figure 5.12, the adaptive filter allows us to decrease the dynamic error of filtering

Filtering and Extrapolation of Target Track Parameters Based on Radar Measure

191

 

 

 

Gn, Ψn, P(x¨mj,n|{Y}n), σ2mn, x¨mj,n

 

 

 

ˆ

ˆ

RAM

 

 

 

xn , x˙n

 

 

ˆ

 

 

ˆ

 

 

xexn,–0.5m; x˙exn,–0.5m

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

ˆ

 

ˆ

.

Σ

 

xexn,0; x˙exn,0

.

 

 

 

 

 

 

 

 

.

 

 

 

 

 

.

 

 

 

 

 

.

 

 

ˆ

 

 

ˆ

 

 

xexn,0.5m; x˙exn,0.5m

 

 

FIGURE 5.11  Flowchart of simplified adaptive filter.

xr

 

y

σx

6g

 

 

1.8

6g

1.6

4g

1.4

4g

1.2

x

1.0

0.86g

0.6

4g

Start of maneuver

 

0.4

 

 

Finish of maneuver

0.2

 

 

n

 

 

4 6 8 10 12 14 16 18 20 22 24 26 28 30

FIGURE 5.12  Dynamic errors of filtering: the adaptive filter (solid line) and nonadaptive filter (dashed line).

twice in comparison with the nonadaptive filter even in the case of low-accuracy fragmentation of the possible acceleration range. In the case considered in Figure 5.12, these errors do not exceed the variance of errors under the coordinating measurement. There is a need to take into consideration that the labor intensiveness of the considered adaptive filter realization by the number of arithmetic operations is twice higher in comparison with the labor intensiveness of the nonadaptive filter realization. With an increase in the number m of discrete values of maneuver acceleration (fragmentation with high accuracy) within the limits of the range (−xmax xmax ), the labor intensiveness of the considered adaptive filter realization is essentially increased.

192

Signal Processing in Radar Systems

5.7  LOGICAL FLOWCHART OF COMPLEX RADAR

SIGNAL REPROCESSING ALGORITHM

We discussed all the main operations of the radar signal reprocessing algorithms in Chapters 4 and 5. Now we consider a problem of discussed algorithm union in the unified complex algorithm of radar signal reprocessing assigned to solve the target detection problems, target tracking and filtering of target track parameters for multiple targets, and information about the contents in radar target pips coming in from the radar signal preprocessing processor output. Under consideration of the unified complex algorithm, we assume that this algorithm is assigned for radar signal reprocessing by the CRS with omnidirectional and uniform rotation radar antenna scanning. In addition, we assume that overlapping of gate signal is absent owing to target and noise environment. We assume that the realization of the unified complex algorithm is carried out by a specific computer subsystem. Random access memory (RAM) of this computer subsystem has specific data array area to store: target tracking trajectory (the data array Dtgtrack); detected target tracks, that is, beginnings of target trajectories with respect to which the final decision about target tracking

or cancellation is not made yet (the data array Dtgdecision); and initial points of new target tracks (the data array Dtginitial). Each data array, in turn, has two equal zones: the first zone is to store informa-

tion used within the limits of the current radar antenna scanning period and the second zone is to store information accumulated to process it within the limits of the next radar antenna scanning. Information recording for each zone is carried out in an arbitrary way.

A logical flowchart of a possible version of the unified complex radar signal reprocessing algorithm is shown in Figure 5.13. In accordance with this block diagram, each new target pip selected from the buffer after coordinate transformation into the Cartesian coordinate system is subjected to the following stages of signal processing:

At first, an accessory of a new target pip to the trajectory of tracking target is checked (block 3). If this target pip belongs to a future gate of one of the tracking target trajectories, then it is considered as belonging to this trajectory and registered for this

 

 

 

 

 

1

 

 

 

11

 

 

 

 

 

 

New target pip

 

 

 

Trajectory

 

 

 

 

 

 

 

 

 

 

 

selection

 

 

 

6

 

 

initial point

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

Belonging to

 

 

 

 

9

 

 

 

Coordinate

 

 

Possible target

 

 

 

 

detected

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

transform

 

 

 

 

track beginning

 

 

 

 

 

trajectory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

10

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

New target

 

 

 

 

 

New target

 

 

 

 

 

 

 

 

 

 

 

 

 

pip accessory

4

 

 

 

 

 

track start

7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Target ttrack

 

 

 

 

 

Parameter

 

 

 

parameters

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

refinement

 

 

 

 

filtering

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

8

 

 

 

Information

 

 

 

 

 

Detection

 

 

 

 

 

 

 

 

 

 

 

 

for user

 

 

 

 

 

 

criterion check

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.13  Logical flowchart of possible version of the united complex algorithms of radar signal reprocessing.

Соседние файлы в папке Diss