
- •Лекции по дисциплине
- •2. Место дисциплины в структуре
- •3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- •4. Структура и содержание дисциплины
- •Содержание разделов дисциплины
- •4.1 Основные понятия надёжности. Классификация отказов. Составляющие надёжности.
- •4.2 Количественные показатели безотказности и математические модели надёжности
- •4.3 Методы обеспечения надёжности сложных систем
- •4.4 Общие правила расчета надежности технических объектов
- •4.5 Прикладные задачи надежности
- •6 Оценочные средства для текущего контроля аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы магистров
- •7 Учебно-методическое и информационное обеспечение дисциплины
- •8 Материально-техническое обеспечение дисциплины
- •1. Основные понятия надёжности. Классификация отказов. Составляющие надёжности
- •1.1 Основные понятия
- •1.2 Классификация и характеристики отказов
- •1.3 Организация работ по установлению причин отказов
- •1.3.1.Необходимые предпосылки для объективного анализа причин
- •1.3.2.Последовательность работ по установлению причин отказов.
- •1.3.3.Схема уточнённого исследования отказов.
- •1.4 Составляющие надёжности
- •1.5 Основные показатели надёжности
- •1.6 Нормирование надёжности
- •1.6.1 Исходные предпосылки
- •1.6.2 Нормирование безотказности.
- •1.6.3 Требования к долговечности.
- •1.6.4. Требования к ремонтопригодности с учётом комплексных показателей.
- •1.6.5. Требования к сохраняемости.
- •1.7. Методы анализа видов, последствий, критичности отказов и работоспособности
- •1.7.1. Метод анализа опасности и работоспособности– аор (Hazard and oRerability Study - hazor)
- •1.7.2. Методы проверочного листа (Check-list) и «Что будет, если ...?» («What — If»)
- •1.7.3. Анализ вида и последствий отказа – авпо (Failure Mode and Effects Analysis — fmea)
- •1.7.4. Анализ вида, последствий и критичности отказа — авпко (Failure Mode, Effects and Critical Analysis — fmeca)
- •1.7.5. Дерево отказов – до (Fault Tree Analysis — fta)
- •1.7.6. Дерево событий – дс (Event Tree Analysis — еta)
- •1.7.7. Дерево решений
- •1.7.8. Контрольные карты процессов
- •1.7.8. Распознавание образов
- •2. Количественные показатели безотказности и математические модели надёжности
- •2.2 Математические модели надёжности
- •2.3 Показатели надёжности восстанавливаемых объектов
- •2.4 Резервирование систем
- •2.5. Методы повышения надежности систем с помощью резервирования
- •3 Методы обеспечения надёжности сложных систем
- •3.1 Основные понятия о надежности сложных технических систем
- •3.2. Повышение надежности сложных технических систем
- •3.3 Конструктивные способы обеспечения надёжности
- •3.4 Технологические способы обеспечения надёжности изделий в процессе изготовления
- •3.5 Обеспечение надёжности сложных технических систем в условиях эксплуатации
- •3.6 Пути повышения надёжности сложных технических систем при эксплуатации
- •3.7 Организационно-технические методы по восстановлению и поддержанию надёжности техники при эксплуатации
- •4. Основы расчета надежности технических систем
- •4.1. Общие правила расчета надежности технических объектов
- •4.2. Методы расчета надежности
- •4.2.1. Методы прогнозирования надежности
- •4.2.2.Структурные методы расчета надежности
- •4.2.3.Физические методы расчета надежности
- •4.3. Последовательность расчета систем
- •5. Методы оценки безотказности технических систем с учетом их структуры
- •5.1 Метод структурных схем
- •5.2 Метод логических схем
- •5.3 Метод матриц (табличный метод)
- •5.4 Расчет надежности, основанный на использовании
- •5.4.1. Система с последовательным соединением элементов
- •5.4.2 Система с параллельным соединением элементов
- •5.4.4. Способы преобразования сложных структур
- •5.5. Расчет надежности тс при структурном резервировании
- •5.5.1. Общие положения
- •5.5.2. Параллельное соединение резервного оборудования системы
- •5.5.3. Включение резервного оборудования системы замещением
- •5.5.4. Надежность резервированной системы в случае комбинаций
- •5.5.5. Анализ надежности систем при множественных отказах
- •6. Методы технической диагностики и отказоустойчивости.
- •7. Методы прогнозирования надежности
4.2.3.Физические методы расчета надежности
Физические методы применяют для расчета безотказности, долговечности и сохраняемости объектов, для которых известны механизмы их деградации под влиянием различных внешних и внутренних факторов, приводящие к отказам (предельным состояниям) в процессе эксплуатации (хранения).
Методы основаны на описании соответствующих процессов деградации с помощью адекватных математических моделей, позволяющих вычислять показатели надежности с учетом конструкции, технологии изготовления, режимов и условий работы объекта по справочным или определенным экспериментально физическим или иным свойствам веществ и материалов, используемых в объекте.
В общем случае указанные модели при одном ведущем процессе деградации могуг быть представлены моделью выбросов некоторого случайного процесса за пределы границ допустимой области его существования, причем границы этой области могут быть также слчайными и коррелированными с указанным процессом (моделью непревышения).
При наличии нескольких независимых процессов деградации, каждый из которых порождает свое распределение ресурса (наработки на отказ), результирующее распределение ресурса (наработки объекта до отказа) находят с использованием модели «Слабешего звена» (распределение минимума независимых случайных величин).
Компоненты моделей непревышения могут иметь различную физическую природу и, соответственно, описываться различными видами распределений случайных величин (случайных процессов), а также могут быть в моделях накопления повреждений. Этим обусловлено большое разнообразие применяемых на практике моделей непревышения, причем лишь в относительно редких случаях эти модели допускают прямое аналитическое решение. Поэтому основным методом расчета надежности по моделям непревышения является статистическое моделирование.
Многочисленные цели расчетов надежности привели к большому разнообразию видов и методов её расчета. На рис.4.1 изображены основные виды расчетов.
|
|
Расчеты
надежности
| ||
| ||||
|
Элементный
|
|
Функциональный | |
|
|
| ||
|
Простых изделий |
|
Сложных изделий | |
|
|
| ||
|
Нерезервированных изделий |
|
Резервированных изделий | |
|
|
| ||
|
Без восстановления |
|
С восстановлением | |
|
|
| ||
|
С учетом только внезапных отказов |
|
С учетом различного вида отказов |
|
Элементный расчет — определение показателей надежности объекта, обусловленных надежностью его комплектующих частей (элементов). В результате такого расчета оценивается техническое состояние объекта (вероятность того, что объект будет находиться в работоспособном состоянии, средняя наработка на отказ и т. п.).
Расчет функциональной надежности — определение показателей надежности выполнения заданных функций (например, вероятность того, что система очистки газа будет работать заданное время, в заданных режимах эксплуатации, с сохранением всех необходимых параметров по показателям очистки). Поскольку такие показатели зависят от ряда действующих факторов, то, как правило, расчет функциональной надежности более сложен, чем элементный расчет.
Выбирая на рис.4.1 варианты перемещений по пути, указанному стрелками, каждый раз получаем новый вид (случай) расчета.
Самый простой расчет — расчет, характеристики которого представлены на рис.4.1 слева: элементный расчет аппаратурной надежности простых изделий, нерезервированных, без учета восстановлений работоспособности при условии, что время работы до отказа подчинено экспоненциальному распределению.
Самый сложный расчет — расчет, характеристики которого представлены на рис.4.1 справа: функциональной надежности сложных резервированных систем с учетом восстановления их работоспособности и различных законов распределения времени работы и времени восстановления.
Выбор того или иного вида расчета надежности определяется заданием на расчет надежности. На основании задания и последующего изучения работы устройства (по его техническому описанию) составляется алгоритм расчета надежности, т. е. последовательность этапов расчета и расчетные формулы.