
- •Лекции по дисциплине
- •2. Место дисциплины в структуре
- •3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- •4. Структура и содержание дисциплины
- •Содержание разделов дисциплины
- •4.1 Основные понятия надёжности. Классификация отказов. Составляющие надёжности.
- •4.2 Количественные показатели безотказности и математические модели надёжности
- •4.3 Методы обеспечения надёжности сложных систем
- •4.4 Общие правила расчета надежности технических объектов
- •4.5 Прикладные задачи надежности
- •6 Оценочные средства для текущего контроля аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы магистров
- •7 Учебно-методическое и информационное обеспечение дисциплины
- •8 Материально-техническое обеспечение дисциплины
- •1. Основные понятия надёжности. Классификация отказов. Составляющие надёжности
- •1.1 Основные понятия
- •1.2 Классификация и характеристики отказов
- •1.3 Организация работ по установлению причин отказов
- •1.3.1.Необходимые предпосылки для объективного анализа причин
- •1.3.2.Последовательность работ по установлению причин отказов.
- •1.3.3.Схема уточнённого исследования отказов.
- •1.4 Составляющие надёжности
- •1.5 Основные показатели надёжности
- •1.6 Нормирование надёжности
- •1.6.1 Исходные предпосылки
- •1.6.2 Нормирование безотказности.
- •1.6.3 Требования к долговечности.
- •1.6.4. Требования к ремонтопригодности с учётом комплексных показателей.
- •1.6.5. Требования к сохраняемости.
- •1.7. Методы анализа видов, последствий, критичности отказов и работоспособности
- •1.7.1. Метод анализа опасности и работоспособности– аор (Hazard and oRerability Study - hazor)
- •1.7.2. Методы проверочного листа (Check-list) и «Что будет, если ...?» («What — If»)
- •1.7.3. Анализ вида и последствий отказа – авпо (Failure Mode and Effects Analysis — fmea)
- •1.7.4. Анализ вида, последствий и критичности отказа — авпко (Failure Mode, Effects and Critical Analysis — fmeca)
- •1.7.5. Дерево отказов – до (Fault Tree Analysis — fta)
- •1.7.6. Дерево событий – дс (Event Tree Analysis — еta)
- •1.7.7. Дерево решений
- •1.7.8. Контрольные карты процессов
- •1.7.8. Распознавание образов
- •2. Количественные показатели безотказности и математические модели надёжности
- •2.2 Математические модели надёжности
- •2.3 Показатели надёжности восстанавливаемых объектов
- •2.4 Резервирование систем
- •2.5. Методы повышения надежности систем с помощью резервирования
- •3 Методы обеспечения надёжности сложных систем
- •3.1 Основные понятия о надежности сложных технических систем
- •3.2. Повышение надежности сложных технических систем
- •3.3 Конструктивные способы обеспечения надёжности
- •3.4 Технологические способы обеспечения надёжности изделий в процессе изготовления
- •3.5 Обеспечение надёжности сложных технических систем в условиях эксплуатации
- •3.6 Пути повышения надёжности сложных технических систем при эксплуатации
- •3.7 Организационно-технические методы по восстановлению и поддержанию надёжности техники при эксплуатации
- •4. Основы расчета надежности технических систем
- •4.1. Общие правила расчета надежности технических объектов
- •4.2. Методы расчета надежности
- •4.2.1. Методы прогнозирования надежности
- •4.2.2.Структурные методы расчета надежности
- •4.2.3.Физические методы расчета надежности
- •4.3. Последовательность расчета систем
- •5. Методы оценки безотказности технических систем с учетом их структуры
- •5.1 Метод структурных схем
- •5.2 Метод логических схем
- •5.3 Метод матриц (табличный метод)
- •5.4 Расчет надежности, основанный на использовании
- •5.4.1. Система с последовательным соединением элементов
- •5.4.2 Система с параллельным соединением элементов
- •5.4.4. Способы преобразования сложных структур
- •5.5. Расчет надежности тс при структурном резервировании
- •5.5.1. Общие положения
- •5.5.2. Параллельное соединение резервного оборудования системы
- •5.5.3. Включение резервного оборудования системы замещением
- •5.5.4. Надежность резервированной системы в случае комбинаций
- •5.5.5. Анализ надежности систем при множественных отказах
- •6. Методы технической диагностики и отказоустойчивости.
- •7. Методы прогнозирования надежности
3 Методы обеспечения надёжности сложных систем
3.1 Основные понятия о надежности сложных технических систем
Сложными называют системы (объекты), в которых отказы отдельных составных частей (элементов, блоков, подсистем) не приводят к полному отказу всей системы (объекта), а вызывают снижение эффективности функционирования. Иначе говоря, сложные системы это такие системы, в которых могут возникать частичные отказы и, следовательно, число состояний такой системы, по крайней мере, больше двух.
Сложные системы характеризуются следующими свойствами:
1)значительным числом состояний системы;
2)многофункциональностью;
3)значительным числом функционально связанных между собой элементов;
4)отсутствием необходимости в одновременной работе всех элементов, блоков и подсистем системы;
5)наличием естественной и искусственной избыточности;
6)многократной восстанавливаемостью;
7)неоднозначностью понятия «отказ».
Для сложных систем оказываются не вполне приемлемыми те показатели, которыми можно характеризовать надёжность простых систем.
Характеристиками сложных систем являются: качество, эффективность, безопасность, долговечность, готовность, живучесть, риск. Все эти характеристики зависят от надёжности системы.
Свойства, обусловливающие надёжность системы – безотказность, ремонтопригодность, долговечность и сохраняемость влияют на полноту и качество выполнения возложенных на систему задач, а, следовательно, влияют на общую оценку функционирования системы.
Понятие безотказности для сложных систем шире, чем для простых. Как отмечалось выше отказ – это событие, заключающееся в нарушении работоспособности, Для сложных систем это нарушение работоспособности может быть полным или частичным, что выражается соответствующим снижением уровня качества функционирования системы. Кроме того, отказ некоторых элементов сложной системы может не приводить к снижению уровня качества функционирования сложной системы при выполнении данной задачи, так как эти элементы не используются в данный момент. Такие отказы также считают частичными отказами системы.
Снижение уровня качества функционирования называют спадом функционирования. Отказы элементов сложной системы могут лишь снижать характеристики её качества и эффективности функционирования.
Понятия качества и эффективности функционирования, в принципе, независимы от понятия надёжности. Ведь можно рассматривать идеальные (абсолютно безотказные) системы и сравнивать их по количественным показателям качества и эффективности функционирования.
Однако, если составные части (элементы) системы могут отказывать, то это существенным образом сказывается на качестве функционирования и выходном эффекте системы. В таких случаях под надёжностью системы следует понимать стабильность показателей качества и эффективности функционирования системы.
Стабильность этих показателей влияет на общую оценку функционирования системы, зависит от надёжности элементов и характеризует надёжность системы в целом.
Обычно используемые показатели, как, например, «параметр потока отказов», «наработка на отказ» и т.п. не могут дать полной оценки надёжности сложной системы, так как они учитывают лишь факт появления или отсутствия отказов в элементах системы и не дают никакого представления о влиянии отказов на конечный эффект функционирования сложной системы, поскольку сложная система может выполнять ту или иную свою задачу, даже если некоторые её элементы отказали.
Показатели качества и эффективности функционирования системы определяются задачами, стоящими перед системой, и только выбор этих показателей окончательно формулирует задачи системы.
Для формулирования задачи системы надо чётко определить критерии эффективности её функционирования. Обычно это задача заказчика. При этом возможно комбинировать различные критерии с их «коэффициентами важности». Тогда возможно получение одного общего критерия, так как сравнивать различные системы и получать однозначный ответ можно только по одному критерию. Когда определён этот критерий, дающий общую оценку функционирования системы, можно говорить о показателях надёжности.
Эксплуатация любой сложной системы представляет собой последовательность различных состояний – хранения, работы, технического обслуживания, ремонта.