
- •Лекции по дисциплине
- •2. Место дисциплины в структуре
- •3. Компетенции обучающегося, формируемые в результате освоения дисциплины
- •4. Структура и содержание дисциплины
- •Содержание разделов дисциплины
- •4.1 Основные понятия надёжности. Классификация отказов. Составляющие надёжности.
- •4.2 Количественные показатели безотказности и математические модели надёжности
- •4.3 Методы обеспечения надёжности сложных систем
- •4.4 Общие правила расчета надежности технических объектов
- •4.5 Прикладные задачи надежности
- •6 Оценочные средства для текущего контроля аттестации по итогам освоения дисциплины и учебно-методическое обеспечение самостоятельной работы магистров
- •7 Учебно-методическое и информационное обеспечение дисциплины
- •8 Материально-техническое обеспечение дисциплины
- •1. Основные понятия надёжности. Классификация отказов. Составляющие надёжности
- •1.1 Основные понятия
- •1.2 Классификация и характеристики отказов
- •1.3 Организация работ по установлению причин отказов
- •1.3.1.Необходимые предпосылки для объективного анализа причин
- •1.3.2.Последовательность работ по установлению причин отказов.
- •1.3.3.Схема уточнённого исследования отказов.
- •1.4 Составляющие надёжности
- •1.5 Основные показатели надёжности
- •1.6 Нормирование надёжности
- •1.6.1 Исходные предпосылки
- •1.6.2 Нормирование безотказности.
- •1.6.3 Требования к долговечности.
- •1.6.4. Требования к ремонтопригодности с учётом комплексных показателей.
- •1.6.5. Требования к сохраняемости.
- •1.7. Методы анализа видов, последствий, критичности отказов и работоспособности
- •1.7.1. Метод анализа опасности и работоспособности– аор (Hazard and oRerability Study - hazor)
- •1.7.2. Методы проверочного листа (Check-list) и «Что будет, если ...?» («What — If»)
- •1.7.3. Анализ вида и последствий отказа – авпо (Failure Mode and Effects Analysis — fmea)
- •1.7.4. Анализ вида, последствий и критичности отказа — авпко (Failure Mode, Effects and Critical Analysis — fmeca)
- •1.7.5. Дерево отказов – до (Fault Tree Analysis — fta)
- •1.7.6. Дерево событий – дс (Event Tree Analysis — еta)
- •1.7.7. Дерево решений
- •1.7.8. Контрольные карты процессов
- •1.7.8. Распознавание образов
- •2. Количественные показатели безотказности и математические модели надёжности
- •2.2 Математические модели надёжности
- •2.3 Показатели надёжности восстанавливаемых объектов
- •2.4 Резервирование систем
- •2.5. Методы повышения надежности систем с помощью резервирования
- •3 Методы обеспечения надёжности сложных систем
- •3.1 Основные понятия о надежности сложных технических систем
- •3.2. Повышение надежности сложных технических систем
- •3.3 Конструктивные способы обеспечения надёжности
- •3.4 Технологические способы обеспечения надёжности изделий в процессе изготовления
- •3.5 Обеспечение надёжности сложных технических систем в условиях эксплуатации
- •3.6 Пути повышения надёжности сложных технических систем при эксплуатации
- •3.7 Организационно-технические методы по восстановлению и поддержанию надёжности техники при эксплуатации
- •4. Основы расчета надежности технических систем
- •4.1. Общие правила расчета надежности технических объектов
- •4.2. Методы расчета надежности
- •4.2.1. Методы прогнозирования надежности
- •4.2.2.Структурные методы расчета надежности
- •4.2.3.Физические методы расчета надежности
- •4.3. Последовательность расчета систем
- •5. Методы оценки безотказности технических систем с учетом их структуры
- •5.1 Метод структурных схем
- •5.2 Метод логических схем
- •5.3 Метод матриц (табличный метод)
- •5.4 Расчет надежности, основанный на использовании
- •5.4.1. Система с последовательным соединением элементов
- •5.4.2 Система с параллельным соединением элементов
- •5.4.4. Способы преобразования сложных структур
- •5.5. Расчет надежности тс при структурном резервировании
- •5.5.1. Общие положения
- •5.5.2. Параллельное соединение резервного оборудования системы
- •5.5.3. Включение резервного оборудования системы замещением
- •5.5.4. Надежность резервированной системы в случае комбинаций
- •5.5.5. Анализ надежности систем при множественных отказах
- •6. Методы технической диагностики и отказоустойчивости.
- •7. Методы прогнозирования надежности
1.7.6. Дерево событий – дс (Event Tree Analysis — еta)
Дерево событий — алгоритм рассмотрения событий, исходящих от основного события (отказа).
Дерево событий (ДС) используется для определения и анализа последовательности (вариантов) развития отказа, включающей сложные взаимодействия между техническими системами (элементами) обеспечения безоотказности. Вероятность каждого сценария развития отказа рассчитывается путем умножения вероятности основного события на вероятность конечного события. При его построении используется прямая логика. Все значения Р очень малы. Дерево не дает численных решений.
1.7.7. Дерево решений
Дерево решений является разновидностью дерева событий. В дереве событий рабочие состояния системы не рассматриваются, так что сумма вероятностей всех событий не равна единице. В дереве решений все возможные состояния системы необходимо выразить через состояния элементов. Таким образом, все состояния системы взаимно увязаны, и их вероятность в сумме должна равняться единице. Деревья решений могут использоваться, если отказы всех элементов независимы или имеются элементы с несколькими возможными состояниями, а также есть односторонние зависимости. Они не могут использоваться при наличии двусторонних зависимостей и не обеспечивают логического анализа при выборе начальных событий.
1.7.8. Контрольные карты процессов
Контрольные карты используются для визуального обнаружения нарушений технологического процесса по измеренным значениям выходной переменной на основе сопоставления ее статистических характеристик с допустимыми (контрольными) пределами. В качестве результатов измерений, наносимых на карты, могут служить любые переменные. Это могут быть изменения размера, точности формы, скачки потребления электрической мощности, давления, температуры, вибрации и т. д. Построение контрольных карт, в частности определение контрольных пределов, основано на методе проверки статистических гипотез.
Изменения выходной переменной y объекта могут быть вызваны, во-первых, случайными внешними и внутренними возмущающими воздействиями, характерными для нормальной эксплуатации, во-вторых, различного рода нарушениями в работе систем (подсистем, элементов) и ошибочными действиями оператора.
Если переменная y изменяется под влиянием причин только первого вида, то процесс находится под статистическим контролем или в статистически подконтрольном состоянии, т. е. случайные колебания y подчиняются одному и тому же закону распределения вероятности. В случае же появления причин второго вида процесс выходит из под контроля (находится вне статистического контроля).
На практике наиболее распространены контрольные карты средних значений (карта у), средних геометрических, накопленных сумм, индивидуальных значений у, медиан ут; комбинированные контрольные карты (ŷ, σу), (у, Rу), (ут> Rу) и др. (где σу, Rу — соответственно среднее квадратическое отклонение и размах распределения случайной величины у).
Пример контрольной карты представлен на рисунке 1.9.
Рис. 1.9. Пример контрольной карты