- •Введение
- •1. Правила выполнения курсовой работы
- •Принятые обозначения
- •2. Правила сдачи курсовой работы
- •3. Правила оформления курсовой работы
- •4. Задания на курсовую работу Задание 1. Определение реакций связей составных конструкций
- •Задание 2. Кинематический анализ многозвенного механизма
- •Задание 3. Исследование движения механических систем с помощью теоремы об изменении кинетической энергии системы
- •Задание 4. Исследование движения механических систем с помощью методов аналитической механики
- •Задание 5 (дополнительное). Определение сил реакций составной конструкции с помощью принципа возможных перемещений (пвп)
- •Приложение а
- •Форма титульного листа курсовой работы
- •Расчетно-пояснительная записка
- •201__ Приложение б
- •Форма бланка задания на курсовую работу
- •Приложение в
- •Пример оформления содержания
- •Приложение г
- •Примеры библиографических описаний
- •Приложение д
- •Статика Силы реакции связей
- •Распределенные силы
- •Алгебраический момент силы относительно точки
- •Теорема Вариньона для плоской системы сил
- •Условия равновесия плоской системы сил
- •Составная конструкция (сочлененная система тел)
- •Приложение е
- •Кинематика
- •Поступательное движение твердого тела
- •Вращение твердого тела вокруг неподвижной оси
- •Плоское (плоскопараллельное) движение твердого тела
- •Теорема о проекциях скоростей
- •Приложение ж
- •Динамика Работа силы
- •Примеры вычисления работы силы
- •Кинетическая энергия
- •Теорема об изменении кинетической энергии системы
- •Приложение и
- •Аналитическая механика Возможные перемещения
- •Элементарная работа силы на возможном перемещении. Идеальные связи
- •Принцип возможных перемещений (принцип Лагранжа)
- •Обобщенные координаты системы
- •Обобщенные силы
- •Вычисление обобщенной силы
- •Общее уравнение динамики (принцип Даламбера-Лагранжа)
- •Уравнения Лагранжа второго рода
- •Заключение
- •Контрольные вопросы и дополнительные задания Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Задание 5
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
Кинетическая энергия
Кинетической
энергией материальной точки называют
половину произведения массы точки на
квадрат ее скорости,
т.е.
или
.
Кинетической
энергией системы
называют сумму кинетических энергий
всех точек механической системы,
т. е.
.
(ПЖ .21)
Кинетическая энергия как точки, так и системы не зависит от направления скоростей точек. Кинетическая энергия может быть равна нулю для системы только при условии, если все точки системы находятся в покое.
Кинетическая энергия твердого тела:
При поступательном движении твердого тела
,
(ПЖ .22)
так
как при поступательном движении твердого
тела скорости всех точек тела одинаковы,
т. е.
,
где
– общая скорость для всех точек тела.
Таким образом, кинетическая энергия твердого тела при поступательном движении вычисляется так же, как и для одной точки, у которой масса равна массе всего тела.
При вращении тела вокруг неподвижной оси
,
П(Ж .23)
где
– момент инерции тела относительно оси
вращения
.
Следовательно, кинетическая энергия тела при вращательном движении вокруг неподвижной оси равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.
При плоском движении твердого тела
.
(ПЖ .24)
Таким образом, при плоском движении тела кинетическая энергия складывается из кинетической энергии поступательного движения тела вместе с центром масс и кинетической энергии от вращения вокруг оси, проходящей через центр масс и перпендикулярной плоскости движения.
Теорема об изменении кинетической энергии системы
Теорема об изменении кинетической энергии системы в дифференциальной форме: дифференциал от кинетической энергии системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему
,
(ПЖ .25)
где
кинетическая энергия системы
,
элементарная работа внешних и внутренних
сил соответственно
и
.
Если
обе части (ПЖ.25) проинтегрировать между
двумя положениями системы – начальным
и конечным, в которых соответственно
кинетическая энергия
и
,
то, изменяя порядок суммирования и
интегрирования, имеем
,
или
,
(ПЖ .26)
где
– работа внешней силы для точки
системы при ее перемещении из начального
положения
в конечное положение
,
соответственно работа внутренней силы,
действующей на точку
.
Формула (ПЖ.26) выражает теорему об изменении кинетической энергии системы в конечной или интегральной форме: изменение кинетической энергии системы при ее перемещении из одного положения в другое равно сумме работ всех внешних и внутренних сил, действующих на систему, на соответствующих перемещениях точек системы при том же перемещении системы.
Частный случай. Для абсолютно твердого тела сумма работ всех внутренних сил системы равна нулю:
.
Т.о., теорему об изменении кинетической энергии, например, в конечной форме можно представить в виде
,
(ПЖ .27)
Изменение кинетической энергии твердого тела при каком-либо перемещении равно сумме работ всех внешних сил, действующих ни тело, на соответствующих перемещениях точек тела при том же перемещении твердого тела.
