Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Макарычев С.В. часть 1.docx
Скачиваний:
101
Добавлен:
19.03.2016
Размер:
2.15 Mб
Скачать

5.3. Климат, погода и ее прогнозирование

Из всех физических явлений больше и чаще всего привлекает человека погода – состояние атмосферы в данном месте в определенный момент или на короткий промежуток времени. Погода определяется процессами, происходящими в атмосфере при ее взаимодействии с земной поверхностью, Мировым океаном и солнечной активностью.

Совокупность и последовательная смена всех возможных в данной местности условий погоды за многолетний промежуток времени называется климатом. Различают климат материка, какой-то его части, зоны, района, города. Погода и климат воздействуют на органическую жизнь, существенно влияют на деятельность людей.

Наука о земной атмосфере и происходящих в ней процессах называется метеорологией. Она решает важные научные и практические задачи. Метеорологи, всесторонне изучая строение и свойства атмосферы, происходящие в ней физические явления и процессы, разрабатывают и совершенствуют методы прогноза (предсказания) погоды. Они ищут способы борьбы с неблагоприятными атмосферными явлениями, разрабатывают методы изменения погоды и климата в необходимом для человека направлении. Это уменьшает зависимость людей от погоды и климата.

Исследуя атмосферу, метеорологи исходят из общих законов физики. При этом особо учитываются географические условия, в которых протекают атмосферные процессы. Но в отличие от физики, для которой основным методом исследования служит эксперимент, то есть искусственное воспроизведение явлений в лабораториях, метеорологи раскрывают закономерности атмосферных процессов на основе данных наблюдений в естественных условиях.

Давно замечено, что климат любой части земного шара зависит прежде всего от географической широты. Эту зависимость имеют растительность и многие другие элементы природы, находящиеся с климатом во взаимосвязи. Еще в конце XVIII в. ученик М.В. Ломоносова и один из первых русских академиков И.И. Лепехин (1740-1802) наметил общую схему размещения по земной поверхности растительности и животного мира в зависимости от тепловых процессов. А в начале XIX в. знаменитый немецкий естествоиспытатель и путешественник А. Гумбольдт (1769-1859) установил зональность и высотную поясность растительности в связи с изменением количества проходящего на Землю тепла.

Основными причинами зональности природы Земли являются ее шарообразность, суточное вращение вокруг своей оси и годовое движение вокруг Солнца. Количество поступающей солнечной энергии убывает от экватора к полюсам в зависимости от угла падения солнечных лучей и длины их пути через атмосферу. В этом же направлении изменяется и количество атмосферного тепла. Именно поэтому в природе земной поверхности ярко проявляется так называемая географическая зональность.

В настоящее время на основании статистических данных о температуре и количестве поступающей на поверхность Земли солнечной энергии выделяют 13 радиационно-тепловых поясов (рис. 52). К их числу относятся: арктический, субарктический; северные умеренный, субтропический, тропический, субэкваториальный, экваториальный; южные субэкваториальный, тропический, субтропический, умеренный; субантарктический, антарктический. Границы и расположение этих поясов зависят главным образом от географической широты. Все они хорошо просматриваются как на суше, так и в океане.

Поверхность Земли обладает различной способностью отражать падающие на нее солнечные лучи (альбедо). По этой причине различные части поверхности по-разному поглощают тепло и нагреваются. Больше всего солнечных лучей (от 80 до 97%) поглощает открытая водная поверхность океана, отражая в атмосферу всего от 20 до 3% падающей не нее радиации. Вода поглощает наибольшее количество поступающего от Солнца тепла и очень медленно отдает его в мировое пространство. Между тем водная поверхность занимает ¾ всей поверхности Земли. Поэтому Мировой океан и является накопителем и главным источником тепла на Земле. Однообразием физических свойств водной поверхности объясняется равномерность и малая величина колебаний температуры над океанами.

Рис. 52. Радиационно-тепловые пояса Земли

В отличие от водной, свойства поверхности суши разнообразны. Поэтому различные ее участки поглощают разное количество солнечной энергии. Травы и листья деревьев в среднем поглощают от 70 до 80%, а свежевыпавший чистый снег – от 2 до 10% поступающей энергии, все же остальное ее количество отражается в атмосферу и в мировое пространство.

Пока точно не доказано, но вполне возможно, что очень низкие температуры и малые запасы тепла в приполярных районах Арктики и Антарктиды, покрытых круглый год льдами и снегом, зависят не столько от меньшего количества поступающего тепла, сколько от сильного отражения лучей поверхностью Земли в этих районах. Это подтверждает и то, что в приполярных широтах в течение летних месяцев в результате круглосуточного освещения и большой прозрачности воздуха годовое количество приходящей солнечной энергии лишь немного уступает умеренным широтам, а наибольшие величины прямой радиации, по наблюдениям антарктической станции «Мирный», даже превышают величины прямой радиации в Тбилиси и Ташкенте. Тем не менее приполярные районы оказывают сильное охлаждающее влияние на климат всего земного шара.

Неравномерное нагревание земной поверхности приводит в движение воздушные и водные массы, стремящиеся выровнять температуру. Взаимосвязанные воздушные и морские течения переносят с места на место огромное количество тепла. Так как вода поглощает и накапливает тепла больше, чем воздух, то особенно большую роль в переносе тепла играют теплые и холодные морские течения. Поэтому на морских побережьях наблюдаются более сильные отклонения от средних температур. Например, на нашем Мурманском побережье, омываемом продолжением Гольфстрима – теплым Атлантическим течением, приходящим из тропических широт, несмотря на его северное положение (около 70° с.ш.), имеются гавани, не замерзающие круглый год. В отличие от морских, воздушные течения более подвижны и вследствие малой теплоемкости воздуха переносят тепло на большие расстояния, но в меньшем количестве.

Общий облик природы любого участка поверхности суши (характер его почв, растительности, животного населения и пр.) зависит не только от количества поступающего тепла, но и от количества влаги: осадков, влажности воздуха, подтока поверхностных и грунтовых вод. Этим природа суши отличается от природы водоемов, где количество влаги постоянно: природа водоемов определяется температурой и прозрачностью воды, ее составом, соленостью и пр.

Основным источником атмосферных осадков на суше являются Мировой океан и его моря, в которых содержится 98% всех вод земного шара. Испаряясь с поверхности океана, водяные пары воздушными течениями переносятся на материки, где выпадают в виде дождя и снега. Замыкая постоянный круговорот, вода возвращается в океан в виде рек, ручьев и подземных вод. Единовременно в воздухе содержится воды в 11 раз больше, чем в реках (около 13 тыс. км3). Количество осадков, выпадающих в разных районах суши, зависит от направления воздушных течений, расстояния до источника увлажнения, рельефа земной поверхности и ряда других условий. Осадки выпадают преимущественно при движении воздуха из более нагретых районов в охлажденные, при подъеме теплого и влажного воздуха в более холодные слои атмосферы, в циклонах, на подветренных склонах гор, при ветрах с моря.

Вследствие этого картина распределения годового количества атмосферных осадков является более сложной, чем картина распределения солнечного тепла, а природные ландшафты суши разнообразнее широтных тепловых поясов. В частности неодинаковое увлажнение даже в пределах одних и тех же радиационно-тепловых поясов приводит к формированию различных географических зон.

Особенности природы отдельных участков земной поверхности определяются не только количеством тепла и влаги, но и соотношением между ними. В соответствии с запасами тепла в каждом поясе может испариться определенное количество влаги. Так, в тундровой зоне, где господствуют низкие температуры и испарение влаги невелико, даже небольшое количество выпадающих осадков испариться полностью не может, и вода, скапливаясь на поверхности, вызывает заболачивание местности. В жарких же поясах осадки, выпадающие даже в большом количестве, испаряются полностью, а во многих районах подвергаются деструкции даже запасы грунтовые воды.

Таким образом, природные условия на суше меняются с географической широтой лишь в общих чертах, и, в отличие от радиационно-тепловых поясов, большая часть географических зон сплошных полос, опоясывающих земной шар, не образует: они прерываются прежде всего водными пространствами и отчетливо прослеживаются только на равнинах.

Широтная географическая зональность выражена наиболее четко в тех частях материковых равнин, в которых количество выпадающих осадков с поступлением тепла с севера на юг постепенно изменяется. Так, в арктическом и субарктическом поясах количество осадков и тепла уменьшается от умеренного пояса к полюсу. Вследствие этого границы арктических пустынь, тундр, лесотундры и северной тайги вытянуты на всех материках с запада на восток. В умеренном же поясе, где господствуют западные воздушные течения, приносящие осадки и тепло с океана на материк, их количество убывает с запада на восток, и широтная географическая зональность нарушается.

В зависимости от удаленности равнин материка от океана, служащего источником влаги и тепла, на одних и тех же широтах встречаются и влажные широколиственные леса, и степи, и пустыни. В тех же местах, где воздушные течения направлены с материка на океан (например, пассаты в северо-западной части Африки и в Южной Америке), тропические пустыни подходят к океаническому берегу вплотную.

Большое влияние на зональность оказывают горные цепи, стоящие на пути воздушных течений. Содержащаяся в них влага в виде осадков выпадает на подветренных склонах гор, а другую сторону хребта обтекает осушенный воздух. Вследствие этого, например, в Азии Гималайские горы отделяют влажные тропические леса Индии от пустынь Тибета и Центральной Азии, а в Южной Америке Анды – пустыню Атакаму от тропических лесов Аргентины и Боливии. В Северной Америке Кордильеры преграждают путь воздушным течениям, несущим влагу с Тихого океана, и поэтому к востоку от гор простираются пустыни и степи. Последние постепенно сменяются широколиственными, а затем хвойными лесами. Таким образом, границы между этими зонами превращаются из широтных в меридиональные.

В горах с высотой температура обычно понижается, а количество осадков – увеличивается. Это определяет смену природных условий и наличие так называемых вертикальных природных поясов.

Зональность, обусловленная космическими факторами, – это одна из наиболее общих закономерностей современной природы нашей планеты. Но конкретные проявления зональности зависят от земных причин, определяющихся прежде всего соотношением тепла и влаги, в той или другой части земной поверхности. Изучение взаимодействия космических и земных явлений на общий облик Земли является одной из основных задач современного естествознания.

Основной причиной движения воздуха на земном шаре, то есть причиной возникновения ветров, является неравномерное распределение на поверхности земли лучистой энергии Солнца. Количество солнечной радиации, поступающее в экваториальную и тропическую зоны, больше, чем в умеренные и особенно в высокие широты. Поэтому воздух в низких широтах нагревается больше, чем в умеренной зоне и полярных областях. Между теплыми и холодными массами воздуха возникают разности температуры и атмосферного давления. Это порождает ветер. Например, так называемый бриз возникает из-за разности температур воздуха над морем и сушей. Воздух над сушей днем нагревается сильнее, чем над морем. В результате этого нагретый воздух поднимается, а на его место приходит воздух с моря. Ночью происходит обратное явление: суша охлаждается, а море остается теплым; воздух над морем поднимается, а на его место приходит воздух с суши.

Приблизительно также возникают мощные ветры, дующие из областей высокого давления в области низкого давления. На направление и силу ветра существенное влияние оказывает вращение Земли. Это проявляется в возникновении так называемой силы Кориолиса. Явление, связанное с ее возникновением, приводит к тому, что ветер на высотах около 1 км дует не в сторону области низкого давления, а отклоняется от этого направления на 90°. В приземном же слое атмосферы существенное влияние на ветер оказывает трение воздуха о поверхность Земли. Оно уменьшает скорость ветра и отклоняет его от изолиний, соединяющих области с одинаковым атмосферным давлением.

При сближении теплого и холодного потоков воздуха горизонтальные перепады температуры, влажности и давления увеличиваются, а скорость ветра возрастает. При отдалении различно нагретого воздуха перепады уменьшаются, и ветры ослабевают. Зоны, в которых холодные и теплые воздушные массы сближаются, называют переходными, или фронтальными. Такие неспокойные зоны возникают и разрушаются в воздушном океане над умеренными и полярными областями обоих полушарий ежедневно. Ширина фронтальных зон сравнительно невелика и составляет обычно 1-2 тыс. км.

На этих фронтах из-за разности температур и давлений возникают обширные вихри, называемые циклонами и антициклонами. Развиваясь, они охватывают всю тропосферу и нижние слои стратосферы и достигают десятков километров в высоту и двух-трех тысяч километров в диаметре. Например, они могут охватить всю европейскую часть России от Мурманска до Кавказа. И не удивительно, что в таких грандиозных вихрях теплые массы воздуха из экваториальной зоны и тропиков переносятся в умеренные и высокие широты, а холодные – в тропики и экваториальную зону. Вследствие этого температура в высоких широтах повышается, а в низких – понижается.

Обычно с циклонами связана облачная с осадками погода, с антициклонами – ясная и малооблачная. В циклоне преобладают восходящие движения воздуха, которые способствуют конденсации влаги, в антициклоне – нисходящие, при которых степень насыщения влагой уменьшается.

Во внетропических широтах подобные атмосферные вихри наблюдаются повсюду, но частота их возникновения в разных районах различна. Так, в Северном полушарии зимой циклоны чаще всего образуются на севере Атлантики и Тихого океана, а антициклоны – на материках Азии и Северной Америки. Летом циклоны, хотя и менее интенсивные, часто возникают и на материках, антициклоны же интенсивны над океанами. В Южном полушарии между зимой (июнь-август) и летом (декабрь-февраль) различие в возникновении циклонов и антициклонов небольшое. Циклоны чаще наблюдаются вокруг Антарктиды, а антициклоны – в северной части умеренной зоны и в субтропиках, причем их центры располагаются над океанами.

В низких широтах преобладают ветры, называемые пассатами и муссонами. Пассаты – это ветры, возникающие из-за различия атмосферного давления в экваториальной зоне. В Северном полушарии они имеют северо-восточное направление, в Южном – юго-восточное.

Муссоны – это сезонные ветры, возникающие из-за разности температур воздуха над материками и океанами. Зимой они дуют от холодных материков к теплым океанам, летом – со сравнительно холодных океанов на нагретые материки. Муссоны характерны для юга и юга-востока Азии, но появляются они и в умеренной зоне, в частности на Дальнем Востоке.

Климат на Земле примерно с середины прошлого столетия стал заметно меняться. Глобальное потепление охватило большую часть планеты, но особенно ярко проявилось в Северном полушарии. До сих пор оно происходило неравномерно: то ослаблялось, то усиливалось. Наибольшее потепление было отмечено в конце 30-х – начале 40-х годов ХХ в. Затем наступил временный спад, но тенденция к потеплению сохраняется и поныне. Считается, что за столетие средняя температура в Северном полушарии повысилась примерно на 0,5°С. Глобальное потепление – это только тенденция, поскольку бывают холодные и даже очень холодные зимы.

Причины глобального потепления на планете, как сейчас установлено, связаны главным образом с увеличением содержания в атмосфере углекислого газа.

Основным климатообразующим фактором в наших умеренных широтах являются особенности циркуляции атмосферы. Исследования и наблюдения позволяют утверждать, что на европейской части России наибольшее похолодание зимой бывает вызвано антициклонами, приходящими с северо-запада, севера и севера-востока. Они приносят морской или континентальный арктический воздух. Температура воздуха все то время, пока развивается антициклон, а это обычно 5-7 сут., бывает понижена в среднем на 4-5°С при северных вхождениях антициклона и на 2-3°С при северо-западных и северо-восточных вхождениях. В отдельных случаях происходит похолодание на 10-20°С по сравнению с нормой. Вторжение циклона зимой обычно вызывает потепление. Теплый воздух на европейскую территорию России выносится либо с юга, со стороны Черного моря, либо с юго-запада, со Средиземного моря, либо с запада – с Атлантического океана. Температура воздуха при этом, как правило, повышается на 2-4°С по сравнению с нормой для данной местности. В отдельных случаях она повышается на 10-12°С.

Общее число теплых зимних сезонов свидетельствует о том, что процесс глобального потепления, по крайней мере в зимнем сезоне на европейской территории России, продолжается. Тенденция к преобладанию числа теплых зимних сезонов над числом холодных сохраняется и для всей территории России.

Различают три вида погоды: безморозную, с переходом температуры воздуха через 0°С, и морозную. Каждый из этих типов делится на классы: первый – на 8, второй – на 2, третий – на 6 классов. Всего же выделяют 16 классов погоды (табл.).

Таблица

Типы и классы погоды

Типы погоды

Классы погоды

Безморозная

Солнечная, очень жаркая и очень сухая

Солнечная, жаркая, сухая

Солнечная, умеренно влажная и влажная

Днем облачная

Ночью облачная

Пасмурная

Дождливая

Очень жаркая и очень влажная

С переходом температуры

воздуха через 0°С

С облачным днем

С ясным днем

Морозная

Слабо морозная

Умеренно морозная

Значительно морозная

Жестко морозная

Крайне морозная

Одной из основных задач метеорологии является прогнозирование погоды. Оно складывается из трех этапов: наблюдение за погодой и сбор информации, обработка результатов наблюдений, составление прогноза.

Метеорологические наблюдения проводятся на поверхности Земли, в непосредственной близости к ней и на некоторой, иногда довольно значительной, высоте. В первых двух случаях они называются наземными, а в третьем – аэрологическими.

Наземные наблюдения осуществляются главным образом метеорологическими станциями, расположенными во многих пунктах земного шара. Высоко в горах, таежных дебрях, среди полей и зыбучих песков, на берегах рек, озер, морей и водохранилищ метеорологи ведут наблюдения за многочисленными сложными и порой грозными явлениями природы. Эти наблюдения не прекращаются ни днем, ни ночью, ни в летний зной, ни в зимнюю стужу. Даже на дрейфующих льдах Арктики и среди вечных снегов Антарктиды несут непрерывную вахту разведчики погоды. В своей работе они пользуются не только термометрами, барометрами, анемометрами, различными самописцами, но радиолокаторами, самолетами, морскими кораблями. Во многих районах Земли в настоящее время расположены радиометеорологические станции, которые фиксируют значение метеорологических элементов без участия человека и в определенные часы передают их по радио в центр.

Наблюдения на метеорологических станциях России проводятся одновременно восемь раз в сутки – каждые три часа. Результаты наблюдений оперативно передаются в метеорологические центры. Для изучения высоких слоев атмосферы, то есть для проведения аэрологических наблюдений, применяются радиозонды, метеорологические ракеты и космические летательные аппараты. В частности, радиозонды поднимаются в атмосферу на небольших резиновых или полиэтиленовых воздушных шарах. Радиозонды снабжаются необходимыми метеорологическими приборами и радиопередатчиками. Принимая сигналы радиозонда, метеорологи определяют давление, температуру и влажность воздуха на различных высотах. Очень часто за полетом радиозонда ведется слежение с помощью радиолокатора. Это позволяет измерять направление и скорость ветра.

При помощи радиозондов изучают атмосферу до высот 35-40 км. Более высокие слои, до 80-100 км, исследуют с помощью ракет. В их головных частях помещаются метеорологические приборы. На заданной высоте головная часть ракеты отделяется от ее корпуса и спускается на парашюте. Показания приборов передаются на наземные приемные пункты по радиосвязи.

Самые верхние слои атмосферы и космическое пространство изучаются с помощью искусственных спутников Земли. Даже один спутник, выведенный на полярную орбиту, совершая один оборот вокруг земного шара за 1,5 ч, в сравнительно короткий срок может доставить информацию о метеорологической обстановке на всей поверхности земного шара. Для получения информации о метеорологических условиях на планете в целом используются системы, состоящие из нескольких спутников, работающих синхронно. Подобные системы дают метеорологам возможность получать величины интересующих их элементов практически одновременно во многих точках земного шара.

Радикальное увеличение объема метеорологической информации существенное, но не главное в использовании спутников в метеорологии. Более важным является то, что это позволяет более глубоко понимать закономерности погодообразующих процессов, значительно улучшать на этой основе качество прогнозов погоды, решать проблемы активного воздействия на нее.

Вся информация с наземных и аэрологических станций, кораблей и самолетов, ракет и искусственных спутников Земли передается в Российский гидрометеорологический центр и его филиалы, а там обрабатывается с помощью компьютеров и используется в научных и прикладных целях. Из всей информации, поступающей в центр, для составления прогноза погоды анализируются характеристики давления, температуры, влажности, скорости ветра, облачности и их изменения за определенный промежуток времени для различных районов земного шара.

Климатической атмосферой уходящего XX столетия называют погодные изменения, связанные с тихоокеанским течением Эль Ниньо. Последнее возникает с периодичностью от двух до семи лет в районе Эквадора и Перу. Оно представляет собой теплое течение, вызывающее многомесячные проливные дожди и ураганы с градом в Южной Америке, столь же продолжительные засухи, приводящие к обширным лесным пожарам в Австралии и Индонезии. Считается, что прямого воздействия на климат и погоду в Европе это течение не оказывает.