Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
реферат КСЕ.docx
Скачиваний:
9
Добавлен:
17.03.2016
Размер:
63.85 Кб
Скачать

Научный метод и его разработки в трудах г.Галилея

Галиле́о Галиле́й — итальянский физик, механик,астроном, философ и математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий. Галилей — основатель экспериментальной физики. Своими экспериментами он убедительно опроверг умозрительную метафизику Аристотеля и заложил фундамент классической механики.

При жизни был известен как активный сторонник гелиоцентрической системы мира, что привело Галилея к серьёзному конфликту с католической церковью

Хотя в древней Греции были замечательные инженеры (Архимед, Герон и другие), сама идея экспериментального метода познания, который должен дополнять и подтверждать дедуктивно-умозрительные построения, была чужда аристократическому духу античной физики. В Европе ещё в XIII веке Роберт Гроссетест и Роджер Бэкон призвали к созданию экспериментальной науки, которая на математическом языке сможет описать природные явления, однако до Галилея в реализации этой идеи не было существенного продвижения: научные методы мало отличались от теологических, и ответы на научные вопросы по-прежнему искали в книгах древних авторитетов. Научная революция в физике начинается с Галилея.

Галилей считается одним из основателей механицизма. Этот научный подход рассматривает Вселенную как гигантский механизм, а сложные природные процессы — как комбинации простейших причин, главная из которых — механическое движение. Анализ механического движения лежит в основе работ Галилея. Для проектирования эксперимента и для осмысления его результатов нужна некоторая предварительная теоретическая модель исследуемого явления, и основой её Галилей считал математику, выводы которой он рассматривал как самое достоверное знание: книга природы «написана на языке математики»; «Тот, кто хочет решать вопросы естественных наук без помощи математики, ставит неразрешимую задачу. Следует измерять то, что измеримо, и делать измеримым то, что таковым не является.»

Опыт Галилей рассматривал не как простое наблюдение, а как осмысленный и продуманный вопрос, заданный природе. Он допускал и мысленные эксперименты, если их результаты не вызывают сомнений. При этом он ясно представлял, что сам по себе опыт не даёт достоверного знания, и полученный от природы ответ должен подвергнуться анализу, результат которого может привести к переделке исходной модели или даже к замене её на другую. Таким образом, эффективный путь познания, по мнению Галилея, состоит в сочетании синтетического (в его терминологии, композитивный метод) и аналитического (резолютивный метод), чувственного и абстрактного. Эта позиция, поддержанная Декартом, с этого момента утвердилась в науке. Тем самым наука получила свой метод, собственный критерий истины и светский характер.

Научный метод и его разработки в трудах Р.Декарта

Рене́ Дека́рт — французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики, автор метода радикального сомнения в философии, механицизма в физике, предтеча рефлексологии. Начальное образование Декарт получил в иезуитском колле́же Ла Флеш, где его учителем был Жан Франсуа. В коллеже Декарт познакомился с Мареном Мерсенном (тогда — учеником, позже — священником), будущим координатором научной жизни Франции. Религиозное образование только укрепило в молодом Декарте скептическое отношение к тогдашним философским авторитетам. Позже он сформулировал свой метод познания: дедуктивные (математические) рассуждения над результатами воспроизводимых опытов.

Исходной точкой рассуждений Декарта является поиск несомненных оснований всякого знания. В эпоху Возрождения Монтень и Шаррон пересадили во французскую литературу скептицизм греческой школы Пиррона.

Ничего общего ни с эмпиризмом, ни с мистицизмом Декарт не имел. Если он искал высшего абсолютного принципа знания в непосредственном самосознании человека, то речь шла не о каком-либо мистическом откровении неведомой основы вещей, а о ясном, аналитическом раскрытии самой общей, логически неопровержимой истины. Её открытие являлось для Декарта условием преодоления сомнений, с которыми боролся его ум.

Таким образом, найден был Декартом первый твёрдый пункт для построения его миросозерцания — не требующая никакого дальнейшего доказательства основная истина нашего ума. От этой истины уже можно, по мнению Декарта, пойти далее к построению новых истин.

Прежде всего, разбирая смысл положения «cogito, ergo sum», Декарт устанавливает критерий достоверности. Почему известное положение ума безусловно достоверно? Никакого другого критерия, кроме психологического, внутреннего критерия ясности и раздельности представления, мы не имеем. В нашем бытии как мыслящего существа убеждает нас не опыт, а лишь отчётливое разложение непосредственного факта самосознания на два одинаково неизбежных и ясных представления, или идеи, — мышления и бытия. Против силлогизма как источника новых знаний Декарт вооружается почти так же энергично, как ранее Бэкон, считая его не орудием открытия новых фактов, а лишь средством изложения истин уже известных, добытых другими путями. Соединение упомянутых идей в сознании есть, таким образом, не умозаключение, а синтез, есть акт творчества, так же как усмотрение величины суммы углов треугольника в геометрии. Декарт первый намекнул на значение вопроса, игравшего затем главную роль у Канта, — именно вопроса о значении априорных синтетических суждений.

Научный метод и его разработки в трудах И.Ньютона

Сэр Исаа́к Нью́тон (или Ньюто́н)— английский физик, математик, механик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисления, теорию цвета, заложил основы современной физической оптики, создал многие другие математические и физические теории.

С работами Ньютона связана новая эпоха в физике и математике. Он завершил начатое Галилеем создание теоретической физики, основанной, с одной стороны, на опытных данных, а с другой — на количественно-математическом описании природы. В математике появляются мощные аналитические методы. В физике основным методом исследования природы становится построение адекватных математических моделей природных процессов и интенсивное исследование этих моделей с систематическим привлечением всей мощи нового математического аппарата. Последующие века доказали исключительную плодотворность такого подхода.

Ньютон решительно отверг популярный в конце XVII века подход Декарта и его последователей-картезианцев, который предписывал при построении научной теории вначале «проницательностью ума» найти «первопричины» исследуемого явления. На практике этот подход часто приводил к выдвижению надуманных гипотез о «субстанциях» и «скрытых свойствах», не поддающихся опытной проверке. Ньютон считал, что в «натуральной философии» (то есть физике) допустимы только такие предположения («принципы», сейчас предпочитают название «законы природы»), которые прямо вытекают из надёжных экспериментов, обобщают их результаты; гипотезами же он называл предположения, недостаточно обоснованные опытами. «Всё…, что не выводится из явлений, должно называться гипотезою; гипотезам же метафизическим, физическим, механическим, скрытым свойствам не место в экспериментальной философии». Примерами принципов служат закон тяготения и 3 закона механики в «Началах»; слово «принципы» (Principia Mathematica, традиционно переводимое как «математические начала») содержится и в названии его главной книги.

В письме к Пардизу Ньютон сформулировал «золотое правило науки»:

Лучшим и наиболее безопасным методом философствования, как мне кажется, должно быть сначала прилежное исследование свойств вещей и установление этих свойств с помощью экспериментов, а затем постепенное продвижение к гипотезам, объясняющим эти свойства. Гипотезы могут быть полезны лишь при объяснении свойств вещей, но нет необходимости взваливать на них обязанности определять эти свойства вне пределов, выявленных экспериментом… ведь можно изобрести множество гипотез, объясняющих любые новые трудности.

Такой подход не только ставил вне науки умозрительные фантазии (например, рассуждения картезианцев о свойствах «тонких материй», будто бы объясняющих электромагнитные явления), но был более гибким и плодотворным, потому что допускал математическое моделирование явлений, для которых первопричины ещё не обнаружены. Это и произошло с тяготением и теорией света — их природа прояснилась гораздо позже, что не мешало успешному многовековому применению ньютоновских моделей.

Знаменитая фраза «гипотез не измышляю», конечно, не означает, что Ньютон недооценивал важность нахождения «первопричин», если они однозначно подтверждаются на опыте. Полученные из эксперимента общие принципы и следствия из них должны также пройти опытную проверку, которая может привести к корректировке или даже смене принципов. «Вся трудность физики… состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления».

Свой научный метод Ньютон сформулировал в книге «Оптика»:

Как в математике, так и при испытании природы, при исследовании трудных вопросов, аналитический метод должен предшествовать синтетическому. Этот анализ заключается в том, что из экспериментов и наблюдений посредством индукции выводят общие заключения и не допускают против них никаких возражений, которые не исходили бы из опытов или других надёжных истин. Ибо гипотезы не рассматриваются в экспериментальной философии. Хотя полученные посредством индукции из экспериментов и наблюдений результаты не могут ещё служить доказательством всеобщих заключений, всё же это — наилучший путь делать заключения, который допускает природа вещей.

В 3-ю книгу «Начал» (начиная со 2-го издания) Ньютон поместил ряд методических правил, направленных против картезианцев; первый из них — вариант «бритвы Оккама»:

   Правило I. Не должно принимать в природе иных причин сверх тех, которые истинны и достаточны для объяснения явлений… природа ничего не делает напрасно, а было бы напрасным совершать многим то, что может быть сделано меньшим. Природа проста и не роскошествует излишними причинами вещей…

   Правило IV. В опытной физике предложения, выведенные из совершающихся явлений с помощью наведения [индукции], несмотря на возможность противных им предположений, должны быть почитаемы за верные или в точности, или приближённо, пока не обнаружатся такие явления, которыми они ещё более уточняются или же окажутся подверженными исключениям.

Механистические взгляды Ньютона оказались неверны — не все явления природы вытекают из механического движения. Однако его научный метод утвердился в науке. Современная физика успешно исследует и применяет явления, природа которых ещё не выяснена (например, элементарные частицы). Начиная с Ньютона, естествознание развивается, твёрдо уверенное в том, что мир познаваем, потому что природа устроена по простым математическим принципам. Эта уверенность стала философской базой для грандиозного прогресса науки и технологии.

Научный метод и его разработки в трудах Д. Максвелла

Джеймс Клерк Ма́ксвелл — британский физик, математик и механик. Шотландец по происхождению. Член Лондонского королевского общества (1861). Максвелл заложил основы современной классической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Один из основателей кинетической теории газов (установил распределение молекул газа по скоростям). Одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамики («демон Максвелла»), получил ряд важных результатов в молекулярной физике и термодинамике (термодинамические соотношения Максвелла, правило Максвелла для фазового перехода жидкость — газ и другие). Пионер количественной теории цветов; автор принципа цветной фотографии. Среди других работ Максвелла — исследования по механике (фотоупругость, теорема Максвелла в теории упругости, работы в области теории устойчивости движения, анализ устойчивости колец Сатурна), оптике, математике. Он подготовил к публикации рукописи работ Генри Кавендиша, много внимания уделял популяризации науки, сконструировал ряд научных приборов. Хотя вклад Максвелла в развитие физики (особенно электродинамики) не был оценён должным образом при его жизни, в последующие годы росло осознание истинного места его трудов в истории науки. Многие крупные учёные отмечали это в своих оценках. Так, Макс Планк обратил внимание на универсализм Максвелла как учёного:

Великие мысли Максвелла не были случайностью: они, естественно, вытекали из богатства его гения; лучше всего это доказывается тем обстоятельством, что он был первооткрывателем в самых разнообразных отраслях физики, и во всех её разделах он был знатоком и учителем.

Однако, по мнению Планка, именно работы Максвелла по электромагнетизму являются вершиной его творчества:

…в учении об электричестве его гений предстаёт перед нами в своём полном величии. Именно в этой области после многолетней тихой исследовательской работы на долю Максвелла выпал такой успех, который мы должны причислить к наиболее удивительным деяниям человеческого духа. Ему удалось выманить у природы в результате одного лишь чистого мышления такие тайны, которые лишь спустя целое поколение и лишь частично удалось показать в остроумных и трудоёмких опытах.

На важность концепции поля в творчестве Максвелла указывали в своей популярной книге «Эволюция физики» Альберт Эйнштейн и Леопольд Инфельд:

Формулировка этих уравнений [то есть уравнений Максвелла] является самым важным событием со времени Ньютона не только вследствие ценности их содержания, но и потому, что они дают образец нового типа законов. Характерную особенность уравнений Максвелла, которая проявляется и во всех других уравнениях современной физики, можно выразить в одном предложении: уравнения Максвелла суть законы, выражающие структуру поля… Теоретическое открытие электромагнитной волны, распространяющейся со скоростью света, является одним из величайших достижений в истории науки. Эйнштейн также признал, что «теория относительности обязана своим возникновением уравнениям Максвелла для электромагнитного поля». Стоит также отметить, что теория Максвелла была первой калибровочно-инвариантной теорией. Она дала толчок дальнейшему развитию принципа калибровочной симметрии, который лежит в основе современной Стандартной модели. Наконец, заслуживают упоминания многочисленные практические приложения электродинамики Максвелла, дополненной концепцией максвелловского тензора напряжений. Это расчёт и создание промышленных установок, и использование радиоволн, и современное численное моделирование электромагнитного поля в сложных системах.

На момент смерти Максвелл был известен прежде всего благодаря вкладу в молекулярно-кинетическую теорию, в разработке которой был признанным лидером. Большое значение в развитии науки, помимо множества конкретных результатов в этой области, имела разработка Максвеллом статистических методов, приведших в итоге к развитию статистической механики. Сам термин «статистическая механика» был введён Максвеллом в 1878 году. Ярким примером понимания важности такого подхода является статистическое толкование второго начала термодинамики и парадокс «демона Максвелла», повлиявшие на формулировку уже в XX веке теории информации. Методы Максвелла в теории процессов переноса также нашли плодотворное развитие и применение в современной физике в работах Поля Ланжевена, Сидни Чепмена, Давида Энскога , Джона Леннард-Джонса и других.

Труды Максвелла по теории цветов заложили основы методов точного количественного определения цветов, получаемых в результате смешения. Эти результаты были использованы Международной комиссией по освещению при разработке цветовых диаграмм с учетом, как спектральных характеристик цветов, так и уровня их насыщенности. Анализ устойчивости колец Сатурна, проведённый Максвеллом, и его работы по кинетической теории находят своё продолжение не только в современных подходах к описанию особенностей строения колец, многие из которых ещё не объяснены, но и в описании похожих астрофизических структур (например, аккреционных дисков). Более того, идеи Максвелла об устойчивости систем частиц нашли применение и развитие в совершенно иных областях — анализе динамики волн и заряженных частиц в кольцевых ускорителях, плазме, нелинейных оптических средах и так далее (системы уравнений Власова — Максвелла, Шрёдингера — Максвелла, Вигнера — Максвелла).

В качестве итоговой оценки вклада Максвелла в науку уместно привести слова лорда Рэлея (1890):

Можно не сомневаться, что последующие поколения будут рассматривать как высшее достижение в этой области [то есть в области электромагнетизма] его электромагнитную теорию света, благодаря которой оптика становится разделом электричества. …лишь немного менее важным, если вообще менее важным, чем его труды по электричеству, было участие Максвелла в развитии динамической теории газов…

Научный метод и его разработки в трудах А.Эйнштейна

Альбе́рт Эйнште́йн  — физик-теоретик, один из основателей современной теоретической физики, лауреат Нобелевской премии по физике 1921 года, общественный деятель-гуманист. Жил в Германии (1879—1893, 1914—1933), Швейцарии (1893—1914) и США (1933—1955). Почётный доктор около 20 ведущих университетов мира, член многих Академий наук, в том числе иностранный почётный член АН СССР (1926).

Эйнштейн — автор более 300 научных работ по физике, а также около 150 книг и статей в области истории и философии науки, публицистики и др. Он разработал несколько значительных физических теорий. Он также предсказал «квантовую телепортацию», предсказал и измерил гиромагнитный эффект Эйнштейна — де Хааза. С 1933 года работал над проблемами космологии и единой теории поля. Активно выступал против войны, против применения ядерного оружия, за гуманизм, уважение прав человека, взаимопонимание между народами.

Эйнштейну принадлежит решающая роль в популяризации и введении в научный оборот новых физических концепций и теорий. В первую очередь это относится к пересмотру понимания физической сущности пространства и времени и к построению новой теории гравитации взамен ньютоновской. Эйнштейн также, вместе с Планком, заложил основы квантовой теории. Эти концепции, многократно подтверждённые экспериментами, образуют фундамент современной физики.

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.