
- •Челябинск
- •2002 Предисловие
- •От издательства
- •Часть 1 Операционные системы и среды
- •Глава 1 Основные понятия Понятие операционной среды
- •Понятия вычислительного процесса и ресурса
- •Диаграмма состояний процесса
- •Реализация понятия последовательного процесса в ос
- •Процессы и треды
- •Прерывания
- •Основные виды ресурсов
- •Классификация операционных систем
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 2 Управление задачами и памятью в операционных системах
- •Планирование и диспетчеризация процессов и задач Стратегии планирования
- •Дисциплины диспетчеризации
- •Вытесняющие и не вытесняющие алгоритмы диспетчеризации
- •Качество диспетчеризации и гарантии обслуживания
- •Диспетчеризация задач с использованием динамических приоритетов
- •Память и отображения, виртуальное адресное пространство
- •Простое непрерывное распределение и распределение с перекрытием (оверлейные структуры)
- •Распределение статическими и динамическими разделами
- •Разделы с фиксированными границами
- •Разделы с подвижными границами
- •Сегментная, страничная и сегментно-страничная организация памяти
- •Сегментный способ организации виртуальной памяти
- •Страничный способ организации виртуальной памяти
- •Сегментно-страничный способ организации виртуальной памяти
- •Распределение оперативной памяти в современных ос для пк
- •Распределение оперативной памяти вMs-dos
- •Распределение оперативной памяти вMicrosoftWindows95/98
- •Распределение оперативной памяти вMicrosoftWindowsNt
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 3 Особенности архитектуры микропроцессоровi80x86
- •Реальный и защищённый режимы работы процессора
- •Новые системные регистры микропроцессоров i80x86
- •Адресация в 32-разрядных микропроцессорахi80х86 при работе в защищённом режиме Поддержка сегментного способа организации виртуальной памяти
- •Поддержка страничного способа организации виртуальной памяти
- •Режим виртуальных машин для исполнения приложений реального режима
- •Защита адресного пространства задач
- •Уровни привилегий для защиты адресного пространства задач
- •Механизм шлюзов для передачи управления на сегменты кода с другими уровнями привилегий
- •Система прерываний 32-разрядных микропроцессоровi80x86
- •Работа системы прерываний в реальном режиме работы процессора
- •Работа системы прерываний в защищённом режиме работы процессора
- •Обработка прерываний в контексте текущей задачи
- •Обработка прерываний с переключением на новую задачу
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 4 Управление вводом/выводом и файловые системы
- •Основные понятия и концепции организации ввода/вывода в ос
- •Режимы управления вводом/выводом
- •Закрепление устройств, общие устройства ввода/вывода
- •Основные системные таблицы ввода/вывода
- •Синхронный и асинхронный ввод/вывод
- •Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
- •Функции файловой системы ос и иерархия данных
- •Структура магнитного диска (разбиение дисков на разделы)
- •Файловая системаFat
- •Структура загрузочной записиDos
- •Файловые системыVfaTиFat32
- •Файловая система hpfs
- •Файловая система ntfs (New Technology File System)
- •Основные возможности файловой системы ntfs
- •Структура тома с файловой системой ntfs
- •Возможности файловой системыNtfSпо ограничению доступа к файлам и каталогам
- •Основные отличияFaTи ntfs
- •Контрольные вопросы и задачи Вопросы для проверки
- •Задания
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного
- •Принцип функциональной избирательности
- •Принцип генерируемости ос
- •Принцип функциональной избыточности
- •Принцип виртуализации
- •Принцип независимости программ от внешних устройств
- •Принцип совместимости
- •Принцип открытой и наращиваемой ос
- •Принцип мобильности (переносимости)
- •Принцип обеспечения безопасности вычислений
- •Микроядерные операционные системы
- •Монолитные операционные системы
- •Требования, предъявляемые к ос реального времени
- •Мультипрограммность и многозадачность
- •Приоритеты задач (потоков)
- •Наследование приоритетов
- •Синхронизация процессов и задач
- •Предсказуемость
- •Принципы построения интерфейсов операционных систем
- •Интерфейс прикладного программирования
- •Реализация функцийApIна уровне ос
- •Реализация функцийApIна уровне системы программирования
- •Реализация функцийApIс помощью внешних библиотек
- •Платформенно-независимый интерфейс posix
- •Пример программирования в различныхApiос
- •Текст программы дляWindows(WinApi)
- •Текст программы дляLinux(posixapi)
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных процессов
- •Независимые и взаимодействующие вычислительные процессы
- •Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
- •Использование блокировки памяти при синхронизации параллельных процессов
- •Возможные проблемы при организации взаимного исключения посредством использования только блокировки памяти
- •Алгоритм Деккера
- •Синхронизация процессов посредством операции «проверка и установка»
- •Семафорные примитивы Дейкстры
- •Мьютексы
- •Использование семафоров при проектировании взаимодействующих вычислительных процессов
- •Задача «поставщик – потребитель»
- •Пример простейшей синхронизации взаимодействующих процессов
- •Решение задачи «читатели – писатели»
- •Мониторы Хоара
- •Почтовые ящики
- •Конвейеры и очереди сообщений Конвейеры (программные каналы)
- •Очереди сообщений
- •Примеры создания параллельных взаимодействующих вычислительных процессов
- •Пример создания многозадачного приложения с помощью системы программированияBorlandDelphi
- •Пример создания комплекса параллельных взаимодействующих программ, выступающих как самостоятельные вычислительные процессы
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 7 Проблема тупиков и методы борьбы с ними
- •Понятие тупиковой ситуации при выполнении параллельных вычислительных процессов
- •Примеры тупиковых ситуаций и причины их возникновения
- •Пример тупика на ресурсах типаCr
- •Пример тупика на ресурсах типаCRиSr
- •Пример тупика на ресурсах типаSr
- •1: P(s2); 5: p(s1);
- •Формальные модели для изучения проблемы тупиковых ситуаций
- •Сети Петри
- •Вычислительные схемы
- •Модель пространства состояний системы
- •Методы борьбы с тупиками
- •Предотвращение тупиков
- •Обход тупиков
- •Обнаружение тупика
- •Обнаружение тупика посредством редукции графа повторно используемых ресурсов
- •Методы обнаружения тупика по наличию замкнутой цепочки запросов
- •Алгоритм обнаружения тупика по наличию замкнутой цепочки запросов
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 8 Современные операционные системы
- •Семейство операционных системUnix Общая характеристика семейства операционных систем unix, особенности архитектуры семейства осunix
- •Основные понятия системыUnix
- •Виртуальная машина
- •Пользователь
- •Интерфейс пользователя
- •Привилегированный пользователь
- •Команды и командный интерпретатор
- •Процессы
- •Функционирование системыUnix
- •Выполнение процессов
- •Подсистема ввода/вывода
- •Перенаправление ввода/вывода
- •Файловая система
- •Структура файловой системы
- •Защита файлов
- •Межпроцессные коммуникации вUnix
- •Сигналы
- •Семафоры
- •Программные каналы
- •Очереди сообщений
- •Разделяемая память
- •Вызовы удаленных процедур (rpc)
- •Операционная системаLinux
- •Семейство операционных систем os/2WarpкомпанииIbm
- •Особенности архитектуры и основные возможности os/2Warp
- •Особенности интерфейса os/2Warp
- •Серверная операционная система os/2Warp4.5
- •Сетевая ос реального времениQnx
- •Архитектура системыQnx
- •Основные механизмы qnx для организации распредёленных вычислений
- •Контрольные вопросы и задачи Вопросы для проверки
- •Приложение а Тексты программы параллельных взаимодействующих задач
- •Приложение б Тексты программ комплекса параллельных взаимодействующих приложений
- •Текст программы а
- •Текст программы в
- •Текст программы d
- •Текст программы g
- •Список литературы
- •Часть 1 6
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного 240
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных 279
- •Глава 7 Проблема тупиков и методы 348
- •Глава 8 Современные операционные 391
Обход тупиков
Обход тупика можно интерпретировать как запрет входа в опасное состояние. Если ни одно из упомянутых четырех условий не исключено, то вход в опасное состояние можно предотвратить при наличии у системы информации о последовательности запросов, связанных с каждым параллельным процессом. Доказано [92], что если вычисления находятся в любом неопасном состоянии, то существует по крайней мере одна последовательность состояний, которая обходит опасное. Следовательно, достаточно проверить, не приведет ли выделение затребованного ресурса сразу же к опасному состоянию. Если да, то запрос отклоняется. Если нет, его можно выполнить. Определение того, является ли состояние опасным или нет, требует анализа последующих запросов процессов.
Рассмотрим следующий пример. Пусть имеется система из трех вычислительных процессов, которые потребляют некоторый ресурс RтипаSR, который выделяется дискретными взаимозаменяемыми единицами, причем существует всего десять единиц этого ресурса. В табл. 7.2 приведены сведения о текущем распределении процессами этого ресурса R, об их текущих запросах на этот ресурс и о максимальных потребностях процессов в ресурсе R.
Последний столбец в табл. 7.2 показывает, сколько ещё единиц ресурса может затребовать каждый из процессов, если получит ресурс на свой текущий запрос.
Если запрос процесса А будет удовлетворен первым, то он в принципе может запросить еще одну единицу ресурса R, и уже в этом случае мы тогда получим тупиковую ситуацию, поскольку ни один из процессов не сможет продолжить свои вычисления. Следовательно, при выполнении запроса процесса А мы попадаем в ненадежное1состояние.
Таблица 7.2.Пример распределения ресурсов
Имя процесса
|
Выделено
|
Запрос
|
Максимальная потребность
|
«Остаток» потребностей
|
А
|
2
|
3
|
6
|
1
|
В
|
3
|
2
|
7
|
2
|
С
|
2
|
3
|
5
|
0
|
Если первым будет выполнен запрос процесса В, то у нас останется свободной еще одна единица ресурса R. Однако если процесс В запросит еще две, а не одну единицу ресурса R, а он может это сделать, то мы опять получим тупиковую ситуацию.
Если же мы сначала выполним запрос процесса С и выделим ему не две (как у процесса В), а все три единицы ресурса R и у нас при этом даже не останется никакого резерва, то, поскольку на этом его потребности в ресурсах заканчиваются, процесс С сможет благополучно завершиться и вернуть системе все свои ресурсы. Это приведет к тому, что свободное количество ресурса R станет равно пяти. Теперь уже можно будет выполнить запрос либо процесса В, либо процесса А, но не обоих сразу.
Часто бывает так, что последовательность запросов, связанных с каждым процессом, неизвестна заранее. Но если заранее известен общий запрос на ресурсы каждого типа, то выделение ресурсов можно контролировать. В этом случае необходимо для каждого требования, предполагая, что оно удовлетворено, определить, существует ли среди общих запросов от всех процессов некоторая последовательность требований, которая может привести к опасному состоянию. Данный подход является примером контролируемого выделения ресурса.
Классическое решение этой задачи известно как алгоритм банкираДейкстры [89]. Алгоритм банкира напоминает процедуру принятия решения, может ли банк безопасно для себя дать взаймы денег. Принятие решения основывается на информации о потребностях клиента (текущих и максимально возможных) и учёте текущего баланса банка. Несмотря на то, что этот алгоритм нигде практически не используется, рассмотрим его, так как он интересен с методической и академической точек зрения. Текст программы алгоритма банкира приведен в листинге 7.4.
Пусть существует N процессов, для каждого из которых известно максимальное количество потребностей в некотором ресурсе R (обозначим эти потребности через Max(i)). Ресурсы выделяются не сразу все, а в соответствии с текущим запросом. Считается, что все ресурсы i-го процесса будут освобождены по его завершении. Количество полученных ресурсов для i-го процесса обозначимПолуч(i). Остаток в потребностях i-го процесса на ресурсRобозначим черезОстаток(i). Признак того, что процесс может не завершиться – это значениеfalseдля переменнойЗаверш(i). Наконец, переменнаяСвоб_ресбудет означать количество свободных единиц ресурса R, а максимальное количество ресурсов в системе определено значениемВсего_рес.
Листинг 7.4.Алгоритм банкира Дейкстры
Begin
Своб_рес := Всего_рес;
For i := 1 to N do
Begin
Своб_рес := Своб_рес – Получ(i);
Остаток(i) := Мах(i) – Получ(i);
Заверш(i) := false: { процесс может не завершиться }
end
flag := true; ( признак продолжения анализа }
while flag do
begin
flag := false;
for i := 1 to N do
begin
if ( not ( За верш(i) )) and ( Остаток(i) <= Своб_рес )
then begin
Заверш(i) := true;
Своб_рес := Своб_рес + Получ(i);
Flag := true
end
end
end;
If Своб_рес = Bcero_pec
then Состояние системы безопасное
и можно выдать ресурс
else Состояние не безопасное
и выдавать ресурс нельзя
end.
Каждый раз, когда какой-то остаток может быть выделен из числа остающихся незанятыми ресурсов, предполагается, что соответствующий процесс работает, пока не окончится, а затем его ресурсы освобождаются. Если, в конце концов, все ресурсы освобождаются, значит, все процессы могут завершиться и система находится в безопасном состоянии. Другими словами, согласно алгоритму банкира система удовлетворяет только те запросы, при которых её состояние остается надёжным. Новое состояние безопасно тогда и только тогда, когда каждый процесс все же может окончиться. Именно это условие и проверяется в алгоритме банкиpa. Запросы процессов, приводящие к переходу системы в ненадёжное состояние, не выполняются и откладываются до момента, когда его всё же можно будет выполнить.
Алгоритм банкира позволяет продолжать выполнение таких процессов, которым в случае системы с предотвращением тупиков пришлось бы ждать. Хотя алгоритм банкира относительно прост, его реализация может обойтись довольно дорого. Основным накладным расходом стратегии обхода тупика с помощью контролируемого выделения ресурса является время выполнения алгоритма, так как он выполняется при каждом запросе. Причем алгоритм работает медленнее всего, когда система близка к тупику. Необходимо отметить, что обход тупика неприменим при отсутствии информации о требованиях процессов на ресурсы.
Рассмотренный алгоритм примитивен, в нём учитывается только один вид ресурса, тогда как в реальных системах количество различных типов ресурсов бывает очень большим. Были опубликованы варианты этого алгоритма для большого числа различных типов системных ресурсов. Однако все равно алгоритм не получил распространения. Причин тому несколько:
Алгоритм исходит из того, что количество распределяемых ресурсов в системе фиксировано, постоянно. Иногда это не так, например, вследствие неисправности отдельных устройств.
Алгоритм требует, чтобы пользователи заранее указывали свои максимальные потребности в ресурсах. Это чрезвычайно трудно реализовать. Часть таких сведений, конечно, могла бы подготавливать система программирования, но всё равно часть информации о потребностях в ресурсах должны давать пользователи. Однако, поскольку компьютеры становятся всё более дружественными по отношению к пользователям, всё чаще встречаются пользователи, которые не имеют ни малейшего представления о том, какие ресурсы им потребуются.
Алгоритм требует, чтобы число работающих процессов оставалось постоянным. Это возможно только для очень редких случаев. Очевидно, что выполнение этого требования в общем случае не реально, особенно в мультитерминальных системах либо если пользователь может запускать по несколько процессов параллельно.