
- •Челябинск
- •2002 Предисловие
- •От издательства
- •Часть 1 Операционные системы и среды
- •Глава 1 Основные понятия Понятие операционной среды
- •Понятия вычислительного процесса и ресурса
- •Диаграмма состояний процесса
- •Реализация понятия последовательного процесса в ос
- •Процессы и треды
- •Прерывания
- •Основные виды ресурсов
- •Классификация операционных систем
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 2 Управление задачами и памятью в операционных системах
- •Планирование и диспетчеризация процессов и задач Стратегии планирования
- •Дисциплины диспетчеризации
- •Вытесняющие и не вытесняющие алгоритмы диспетчеризации
- •Качество диспетчеризации и гарантии обслуживания
- •Диспетчеризация задач с использованием динамических приоритетов
- •Память и отображения, виртуальное адресное пространство
- •Простое непрерывное распределение и распределение с перекрытием (оверлейные структуры)
- •Распределение статическими и динамическими разделами
- •Разделы с фиксированными границами
- •Разделы с подвижными границами
- •Сегментная, страничная и сегментно-страничная организация памяти
- •Сегментный способ организации виртуальной памяти
- •Страничный способ организации виртуальной памяти
- •Сегментно-страничный способ организации виртуальной памяти
- •Распределение оперативной памяти в современных ос для пк
- •Распределение оперативной памяти вMs-dos
- •Распределение оперативной памяти вMicrosoftWindows95/98
- •Распределение оперативной памяти вMicrosoftWindowsNt
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 3 Особенности архитектуры микропроцессоровi80x86
- •Реальный и защищённый режимы работы процессора
- •Новые системные регистры микропроцессоров i80x86
- •Адресация в 32-разрядных микропроцессорахi80х86 при работе в защищённом режиме Поддержка сегментного способа организации виртуальной памяти
- •Поддержка страничного способа организации виртуальной памяти
- •Режим виртуальных машин для исполнения приложений реального режима
- •Защита адресного пространства задач
- •Уровни привилегий для защиты адресного пространства задач
- •Механизм шлюзов для передачи управления на сегменты кода с другими уровнями привилегий
- •Система прерываний 32-разрядных микропроцессоровi80x86
- •Работа системы прерываний в реальном режиме работы процессора
- •Работа системы прерываний в защищённом режиме работы процессора
- •Обработка прерываний в контексте текущей задачи
- •Обработка прерываний с переключением на новую задачу
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 4 Управление вводом/выводом и файловые системы
- •Основные понятия и концепции организации ввода/вывода в ос
- •Режимы управления вводом/выводом
- •Закрепление устройств, общие устройства ввода/вывода
- •Основные системные таблицы ввода/вывода
- •Синхронный и асинхронный ввод/вывод
- •Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
- •Функции файловой системы ос и иерархия данных
- •Структура магнитного диска (разбиение дисков на разделы)
- •Файловая системаFat
- •Структура загрузочной записиDos
- •Файловые системыVfaTиFat32
- •Файловая система hpfs
- •Файловая система ntfs (New Technology File System)
- •Основные возможности файловой системы ntfs
- •Структура тома с файловой системой ntfs
- •Возможности файловой системыNtfSпо ограничению доступа к файлам и каталогам
- •Основные отличияFaTи ntfs
- •Контрольные вопросы и задачи Вопросы для проверки
- •Задания
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного
- •Принцип функциональной избирательности
- •Принцип генерируемости ос
- •Принцип функциональной избыточности
- •Принцип виртуализации
- •Принцип независимости программ от внешних устройств
- •Принцип совместимости
- •Принцип открытой и наращиваемой ос
- •Принцип мобильности (переносимости)
- •Принцип обеспечения безопасности вычислений
- •Микроядерные операционные системы
- •Монолитные операционные системы
- •Требования, предъявляемые к ос реального времени
- •Мультипрограммность и многозадачность
- •Приоритеты задач (потоков)
- •Наследование приоритетов
- •Синхронизация процессов и задач
- •Предсказуемость
- •Принципы построения интерфейсов операционных систем
- •Интерфейс прикладного программирования
- •Реализация функцийApIна уровне ос
- •Реализация функцийApIна уровне системы программирования
- •Реализация функцийApIс помощью внешних библиотек
- •Платформенно-независимый интерфейс posix
- •Пример программирования в различныхApiос
- •Текст программы дляWindows(WinApi)
- •Текст программы дляLinux(posixapi)
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных процессов
- •Независимые и взаимодействующие вычислительные процессы
- •Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
- •Использование блокировки памяти при синхронизации параллельных процессов
- •Возможные проблемы при организации взаимного исключения посредством использования только блокировки памяти
- •Алгоритм Деккера
- •Синхронизация процессов посредством операции «проверка и установка»
- •Семафорные примитивы Дейкстры
- •Мьютексы
- •Использование семафоров при проектировании взаимодействующих вычислительных процессов
- •Задача «поставщик – потребитель»
- •Пример простейшей синхронизации взаимодействующих процессов
- •Решение задачи «читатели – писатели»
- •Мониторы Хоара
- •Почтовые ящики
- •Конвейеры и очереди сообщений Конвейеры (программные каналы)
- •Очереди сообщений
- •Примеры создания параллельных взаимодействующих вычислительных процессов
- •Пример создания многозадачного приложения с помощью системы программированияBorlandDelphi
- •Пример создания комплекса параллельных взаимодействующих программ, выступающих как самостоятельные вычислительные процессы
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 7 Проблема тупиков и методы борьбы с ними
- •Понятие тупиковой ситуации при выполнении параллельных вычислительных процессов
- •Примеры тупиковых ситуаций и причины их возникновения
- •Пример тупика на ресурсах типаCr
- •Пример тупика на ресурсах типаCRиSr
- •Пример тупика на ресурсах типаSr
- •1: P(s2); 5: p(s1);
- •Формальные модели для изучения проблемы тупиковых ситуаций
- •Сети Петри
- •Вычислительные схемы
- •Модель пространства состояний системы
- •Методы борьбы с тупиками
- •Предотвращение тупиков
- •Обход тупиков
- •Обнаружение тупика
- •Обнаружение тупика посредством редукции графа повторно используемых ресурсов
- •Методы обнаружения тупика по наличию замкнутой цепочки запросов
- •Алгоритм обнаружения тупика по наличию замкнутой цепочки запросов
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 8 Современные операционные системы
- •Семейство операционных системUnix Общая характеристика семейства операционных систем unix, особенности архитектуры семейства осunix
- •Основные понятия системыUnix
- •Виртуальная машина
- •Пользователь
- •Интерфейс пользователя
- •Привилегированный пользователь
- •Команды и командный интерпретатор
- •Процессы
- •Функционирование системыUnix
- •Выполнение процессов
- •Подсистема ввода/вывода
- •Перенаправление ввода/вывода
- •Файловая система
- •Структура файловой системы
- •Защита файлов
- •Межпроцессные коммуникации вUnix
- •Сигналы
- •Семафоры
- •Программные каналы
- •Очереди сообщений
- •Разделяемая память
- •Вызовы удаленных процедур (rpc)
- •Операционная системаLinux
- •Семейство операционных систем os/2WarpкомпанииIbm
- •Особенности архитектуры и основные возможности os/2Warp
- •Особенности интерфейса os/2Warp
- •Серверная операционная система os/2Warp4.5
- •Сетевая ос реального времениQnx
- •Архитектура системыQnx
- •Основные механизмы qnx для организации распредёленных вычислений
- •Контрольные вопросы и задачи Вопросы для проверки
- •Приложение а Тексты программы параллельных взаимодействующих задач
- •Приложение б Тексты программ комплекса параллельных взаимодействующих приложений
- •Текст программы а
- •Текст программы в
- •Текст программы d
- •Текст программы g
- •Список литературы
- •Часть 1 6
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного 240
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных 279
- •Глава 7 Проблема тупиков и методы 348
- •Глава 8 Современные операционные 391
Пример тупика на ресурсах типаSr
Предположим, что существуют два процесса ПР1 и ПР2, разделяющих два ресурса типа SR:R1 иR2. Пусть взаимное исключение доступов к этим ресурсам реализуется с помощью семафоровS1 иS2 соответственно. Процессы ПР1 и ПР2 обращаются к ресурсам следующим образом [37] (рис. 7.3):
Процесс ПР1 Процесс ПР2
: :
1: P(s2); 5: p(s1);
: :
2: P(S1); 6: P(S2);
: :
3: V(S1); 7: V(S1);
: :
4: V(S2); 8: V(S2);
: :
Рис. 7.3.Пример последовательности операторов для двух процессов, которые
могут привести к тупиковой ситуации
Здесь несущественные (с точки зрения обращения к ресурсам) детали опущены. Считаем, что оба семафора первоначально установлены в единицу. Пространство возможных вычислений приведено на рис. 7.4.
Горизонтальная ось задаёт выполнение процесса ПР1, вертикальная – ПР2. Вертикальные линии, пронумерованные от 1 до 4, соответствуют операторам 1– 4 процесса ПР1. Аналогично горизонтальные линии, пронумерованные от 5 до 8, соответствуют операторам 5 – 8 программы ПР2. Точка на плоскости определяет состояние вычислений в некоторый момент времени. Так, точка А соответствует ситуации, при которой ПР1 начал исполнение, но не достиг оператора 1, а ПР2 выполнил оператор 6, но не дошел до оператора 7. По мере выполнения точка будет двигаться горизонтально вправо, если исполняется ПР1, и вертикально вверх, если исполняется ПР2.
Интервалы исполнения, во время которых ресурсы R1 и R2 используются каждым процессом, показаны с помощью фигурных скобок. Линии 1 – 8 делят пространство вычислений на 25 прямоугольников, каждый из которых задаёт состояние вычислений. Закрашенные серым цветом состояния являются недостижимыми из-за взаимного исключения ПР1 и ПР2 при доступе к ресурсам R1 и R2.
Рассмотрим последовательность исполнения 1–2–5–3–6–4–7–8, представленную траекторией Т1. Когда процесс ПР2 запрашивает ресурс R1 (оператор 5), ресурс недоступен (оператор выполнен, семафор закрыт). Поэтому процесс ПР2 заблокирован в точке В. Как только процесс ПР1 достигнет оператора 3, процесс ПР2 деблокируется по ресурсу R1. Аналогично в точке С процесс ПР2 будет заблокирован при попытке доступа к ресурсуR2 (оператор 6). Как только процесс ПР1 достигнет оператора 4, процесс ПР2 деблокируется по ресурсу R2.
Если
же, например, выполняется последовательность
1–5–2–6, то процесс ПР1 заблокируется в
точке Х при выполнении оператора 2, а
процесс ПР2 заблокируется в точке Yпри выполнении оператора 6. При этом
процесс ПР1 ждёт, когда процесс ПР2
выполнит оператор 7, а ПР2 ждёт, когда
ПР1 выполнит оператор 4. Оба процесса
будут находиться в тупике, ни ПР1, ни ПР2
не могут закончить выполнение. При этом
все ресурсы, которые получили ПР1 и ПР2,
становятся недоступными для других
процессов, что резко снижает возможности
вычислительной системы по обслуживанию
их. Отметим одно очень важное
обстоятельство: тупик будет неизбежным,
если вычисления зашли в прямоугольникD, являющийся критическим
состоянием.
Рис. 7.4.Пространство состояний системы двух параллельных конкурирующих процессов
Для того чтобы возник тупик, необходимо, чтобы одновременно выполнялись четыре условия [37, 92]:
взаимного исключения, при котором процессы осуществляют монопольный доступ к ресурсам;
ожидания, при котором процесс, запросивший ресурс, ждёт до тех пор, пока запрос не будет удовлетворен, при этом удерживая ранее полученные ресурсы;
отсутствия перераспределения, при котором ресурсы нельзя отобрать у процесса, если они ему уже выделены;
кругового ожидания, при котором существует замкнутая цепь процессов, каждый из которых ждёт ресурс, удерживаемый его предшественником в этой цепи.
Проанализировав содержательный смысл этих четырех условий, легко убедиться, что все они выполняются в точке Y (см. рис. 7.4).