
- •Челябинск
- •2002 Предисловие
- •От издательства
- •Часть 1 Операционные системы и среды
- •Глава 1 Основные понятия Понятие операционной среды
- •Понятия вычислительного процесса и ресурса
- •Диаграмма состояний процесса
- •Реализация понятия последовательного процесса в ос
- •Процессы и треды
- •Прерывания
- •Основные виды ресурсов
- •Классификация операционных систем
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 2 Управление задачами и памятью в операционных системах
- •Планирование и диспетчеризация процессов и задач Стратегии планирования
- •Дисциплины диспетчеризации
- •Вытесняющие и не вытесняющие алгоритмы диспетчеризации
- •Качество диспетчеризации и гарантии обслуживания
- •Диспетчеризация задач с использованием динамических приоритетов
- •Память и отображения, виртуальное адресное пространство
- •Простое непрерывное распределение и распределение с перекрытием (оверлейные структуры)
- •Распределение статическими и динамическими разделами
- •Разделы с фиксированными границами
- •Разделы с подвижными границами
- •Сегментная, страничная и сегментно-страничная организация памяти
- •Сегментный способ организации виртуальной памяти
- •Страничный способ организации виртуальной памяти
- •Сегментно-страничный способ организации виртуальной памяти
- •Распределение оперативной памяти в современных ос для пк
- •Распределение оперативной памяти вMs-dos
- •Распределение оперативной памяти вMicrosoftWindows95/98
- •Распределение оперативной памяти вMicrosoftWindowsNt
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 3 Особенности архитектуры микропроцессоровi80x86
- •Реальный и защищённый режимы работы процессора
- •Новые системные регистры микропроцессоров i80x86
- •Адресация в 32-разрядных микропроцессорахi80х86 при работе в защищённом режиме Поддержка сегментного способа организации виртуальной памяти
- •Поддержка страничного способа организации виртуальной памяти
- •Режим виртуальных машин для исполнения приложений реального режима
- •Защита адресного пространства задач
- •Уровни привилегий для защиты адресного пространства задач
- •Механизм шлюзов для передачи управления на сегменты кода с другими уровнями привилегий
- •Система прерываний 32-разрядных микропроцессоровi80x86
- •Работа системы прерываний в реальном режиме работы процессора
- •Работа системы прерываний в защищённом режиме работы процессора
- •Обработка прерываний в контексте текущей задачи
- •Обработка прерываний с переключением на новую задачу
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 4 Управление вводом/выводом и файловые системы
- •Основные понятия и концепции организации ввода/вывода в ос
- •Режимы управления вводом/выводом
- •Закрепление устройств, общие устройства ввода/вывода
- •Основные системные таблицы ввода/вывода
- •Синхронный и асинхронный ввод/вывод
- •Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
- •Функции файловой системы ос и иерархия данных
- •Структура магнитного диска (разбиение дисков на разделы)
- •Файловая системаFat
- •Структура загрузочной записиDos
- •Файловые системыVfaTиFat32
- •Файловая система hpfs
- •Файловая система ntfs (New Technology File System)
- •Основные возможности файловой системы ntfs
- •Структура тома с файловой системой ntfs
- •Возможности файловой системыNtfSпо ограничению доступа к файлам и каталогам
- •Основные отличияFaTи ntfs
- •Контрольные вопросы и задачи Вопросы для проверки
- •Задания
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного
- •Принцип функциональной избирательности
- •Принцип генерируемости ос
- •Принцип функциональной избыточности
- •Принцип виртуализации
- •Принцип независимости программ от внешних устройств
- •Принцип совместимости
- •Принцип открытой и наращиваемой ос
- •Принцип мобильности (переносимости)
- •Принцип обеспечения безопасности вычислений
- •Микроядерные операционные системы
- •Монолитные операционные системы
- •Требования, предъявляемые к ос реального времени
- •Мультипрограммность и многозадачность
- •Приоритеты задач (потоков)
- •Наследование приоритетов
- •Синхронизация процессов и задач
- •Предсказуемость
- •Принципы построения интерфейсов операционных систем
- •Интерфейс прикладного программирования
- •Реализация функцийApIна уровне ос
- •Реализация функцийApIна уровне системы программирования
- •Реализация функцийApIс помощью внешних библиотек
- •Платформенно-независимый интерфейс posix
- •Пример программирования в различныхApiос
- •Текст программы дляWindows(WinApi)
- •Текст программы дляLinux(posixapi)
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных процессов
- •Независимые и взаимодействующие вычислительные процессы
- •Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
- •Использование блокировки памяти при синхронизации параллельных процессов
- •Возможные проблемы при организации взаимного исключения посредством использования только блокировки памяти
- •Алгоритм Деккера
- •Синхронизация процессов посредством операции «проверка и установка»
- •Семафорные примитивы Дейкстры
- •Мьютексы
- •Использование семафоров при проектировании взаимодействующих вычислительных процессов
- •Задача «поставщик – потребитель»
- •Пример простейшей синхронизации взаимодействующих процессов
- •Решение задачи «читатели – писатели»
- •Мониторы Хоара
- •Почтовые ящики
- •Конвейеры и очереди сообщений Конвейеры (программные каналы)
- •Очереди сообщений
- •Примеры создания параллельных взаимодействующих вычислительных процессов
- •Пример создания многозадачного приложения с помощью системы программированияBorlandDelphi
- •Пример создания комплекса параллельных взаимодействующих программ, выступающих как самостоятельные вычислительные процессы
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 7 Проблема тупиков и методы борьбы с ними
- •Понятие тупиковой ситуации при выполнении параллельных вычислительных процессов
- •Примеры тупиковых ситуаций и причины их возникновения
- •Пример тупика на ресурсах типаCr
- •Пример тупика на ресурсах типаCRиSr
- •Пример тупика на ресурсах типаSr
- •1: P(s2); 5: p(s1);
- •Формальные модели для изучения проблемы тупиковых ситуаций
- •Сети Петри
- •Вычислительные схемы
- •Модель пространства состояний системы
- •Методы борьбы с тупиками
- •Предотвращение тупиков
- •Обход тупиков
- •Обнаружение тупика
- •Обнаружение тупика посредством редукции графа повторно используемых ресурсов
- •Методы обнаружения тупика по наличию замкнутой цепочки запросов
- •Алгоритм обнаружения тупика по наличию замкнутой цепочки запросов
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 8 Современные операционные системы
- •Семейство операционных системUnix Общая характеристика семейства операционных систем unix, особенности архитектуры семейства осunix
- •Основные понятия системыUnix
- •Виртуальная машина
- •Пользователь
- •Интерфейс пользователя
- •Привилегированный пользователь
- •Команды и командный интерпретатор
- •Процессы
- •Функционирование системыUnix
- •Выполнение процессов
- •Подсистема ввода/вывода
- •Перенаправление ввода/вывода
- •Файловая система
- •Структура файловой системы
- •Защита файлов
- •Межпроцессные коммуникации вUnix
- •Сигналы
- •Семафоры
- •Программные каналы
- •Очереди сообщений
- •Разделяемая память
- •Вызовы удаленных процедур (rpc)
- •Операционная системаLinux
- •Семейство операционных систем os/2WarpкомпанииIbm
- •Особенности архитектуры и основные возможности os/2Warp
- •Особенности интерфейса os/2Warp
- •Серверная операционная система os/2Warp4.5
- •Сетевая ос реального времениQnx
- •Архитектура системыQnx
- •Основные механизмы qnx для организации распредёленных вычислений
- •Контрольные вопросы и задачи Вопросы для проверки
- •Приложение а Тексты программы параллельных взаимодействующих задач
- •Приложение б Тексты программ комплекса параллельных взаимодействующих приложений
- •Текст программы а
- •Текст программы в
- •Текст программы d
- •Текст программы g
- •Список литературы
- •Часть 1 6
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного 240
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных 279
- •Глава 7 Проблема тупиков и методы 348
- •Глава 8 Современные операционные 391
Работа системы прерываний в защищённом режиме работы процессора
В защищённом режиме работы система прерываний действует совершенно иначе. Прежде всего, система прерываний микропроцессора i80x86 при работе в защищённом режиме вместо таблицы векторов, о которой мы говорили выше, имеет дело с таблицейдескрипторов прерываний(IDT,interruptdescriptortable). Дело здесь не столько в названии таблицы, сколько в том, что таблица IDT представляет собой не таблицу с адресами обработчиков прерываний, а таблицу со специальными системными структурами данных (дескрипторами), доступ к которой со стороны пользовательских (прикладных) программ невозможен. Только сам микропроцессор (его система прерываний) и код операционной системы могут получить доступ к этой таблице, которая представляет собой специальный сегмент, адрес и длина которого содержатся в регистреIDTR(см. рис. 3.2). Этот регистр аналогичен региструGDTRв том отношении, что он инициализируется один раз при загрузке системы. Интересно заметить, что в реальном режиме работы регистр IDTR так же указывает адрес таблицы прерываний, но при этом, как и в процессореi8086, каждый элемент таблицы прерываний (вектор) занимает всего 4 байта и содержит 32-битный адрес в формате селектор: смещение (CS:IP). Начальное значение этого регистра равно нулю, но в него можно занести и другое значение. В этом случае таблица векторов прерываний будет находиться в другом месте оперативной памяти. Естественно, что перед тем, как это сделать (занести в регистр IDTR новое значение), необходимо подготовить саму таблицу векторов. В защищённом режиме работы загрузку регистра IDTR может произвести только код с максимальным уровнем привилегий.
Каждый элемент в таблице дескрипторов прерываний, о которой мы говорим уже в защищённом режиме, представляет собой 8-байтовую структуру, более похожую на дескриптор шлюза (gate), нежели на дескриптор сегмента.
Как мы уже знаем, в зависимости от причины прерывания процессор автоматически индексирует таблицу прерываний и выбирает соответствующий элемент, с помощью которого и осуществляется перенаправление в исполнении кода, то есть передача управления на обработчик прерывания. Однако таблица IDTсодержит только шлюзы, а не дескрипторы сегментов кода, поэтому фактически получается косвенная адресация, но с использованием рассмотренного ранее механизма защиты с помощью уровней привилегии. Благодаря этому пользователи уже не могут сами изменить обработку прерываний, которая предопределяется системным программным обеспечением.
Дескриптор прерываний может принадлежать к одному из трех типов:
коммутатор прерывания (interruptgate);
коммутатор перехвата (trapgate);
коммутатор задачи (taskgate).
При обнаружении запроса на прерывание и при условии, что прерывания сейчас разрешены, процессор действует в зависимости от типа дескриптора (коммутатора), соответствующего номеру прерывания. Первые два типа дескриптора прерываний вызывают переход на соответствующие сегменты кода, принадлежащие виртуальному адресному пространству текущего вычислительного процесса. Поэтому про них говорят, что обработка прерываний по этим дескрипторам осуществляется под контролем текущей задачи.Последний тип дескриптора – коммутатор задачи – вызывает полное переключение процессора на новую задачу со сменой всего контекста в соответствии с сегментом состояния задачи (TSS). Рассмотрим эти варианты.