
- •Челябинск
- •2002 Предисловие
- •От издательства
- •Часть 1 Операционные системы и среды
- •Глава 1 Основные понятия Понятие операционной среды
- •Понятия вычислительного процесса и ресурса
- •Диаграмма состояний процесса
- •Реализация понятия последовательного процесса в ос
- •Процессы и треды
- •Прерывания
- •Основные виды ресурсов
- •Классификация операционных систем
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 2 Управление задачами и памятью в операционных системах
- •Планирование и диспетчеризация процессов и задач Стратегии планирования
- •Дисциплины диспетчеризации
- •Вытесняющие и не вытесняющие алгоритмы диспетчеризации
- •Качество диспетчеризации и гарантии обслуживания
- •Диспетчеризация задач с использованием динамических приоритетов
- •Память и отображения, виртуальное адресное пространство
- •Простое непрерывное распределение и распределение с перекрытием (оверлейные структуры)
- •Распределение статическими и динамическими разделами
- •Разделы с фиксированными границами
- •Разделы с подвижными границами
- •Сегментная, страничная и сегментно-страничная организация памяти
- •Сегментный способ организации виртуальной памяти
- •Страничный способ организации виртуальной памяти
- •Сегментно-страничный способ организации виртуальной памяти
- •Распределение оперативной памяти в современных ос для пк
- •Распределение оперативной памяти вMs-dos
- •Распределение оперативной памяти вMicrosoftWindows95/98
- •Распределение оперативной памяти вMicrosoftWindowsNt
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 3 Особенности архитектуры микропроцессоровi80x86
- •Реальный и защищённый режимы работы процессора
- •Новые системные регистры микропроцессоров i80x86
- •Адресация в 32-разрядных микропроцессорахi80х86 при работе в защищённом режиме Поддержка сегментного способа организации виртуальной памяти
- •Поддержка страничного способа организации виртуальной памяти
- •Режим виртуальных машин для исполнения приложений реального режима
- •Защита адресного пространства задач
- •Уровни привилегий для защиты адресного пространства задач
- •Механизм шлюзов для передачи управления на сегменты кода с другими уровнями привилегий
- •Система прерываний 32-разрядных микропроцессоровi80x86
- •Работа системы прерываний в реальном режиме работы процессора
- •Работа системы прерываний в защищённом режиме работы процессора
- •Обработка прерываний в контексте текущей задачи
- •Обработка прерываний с переключением на новую задачу
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 4 Управление вводом/выводом и файловые системы
- •Основные понятия и концепции организации ввода/вывода в ос
- •Режимы управления вводом/выводом
- •Закрепление устройств, общие устройства ввода/вывода
- •Основные системные таблицы ввода/вывода
- •Синхронный и асинхронный ввод/вывод
- •Кэширование операций ввода/вывода при работе с накопителями на магнитных дисках
- •Функции файловой системы ос и иерархия данных
- •Структура магнитного диска (разбиение дисков на разделы)
- •Файловая системаFat
- •Структура загрузочной записиDos
- •Файловые системыVfaTиFat32
- •Файловая система hpfs
- •Файловая система ntfs (New Technology File System)
- •Основные возможности файловой системы ntfs
- •Структура тома с файловой системой ntfs
- •Возможности файловой системыNtfSпо ограничению доступа к файлам и каталогам
- •Основные отличияFaTи ntfs
- •Контрольные вопросы и задачи Вопросы для проверки
- •Задания
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного
- •Принцип функциональной избирательности
- •Принцип генерируемости ос
- •Принцип функциональной избыточности
- •Принцип виртуализации
- •Принцип независимости программ от внешних устройств
- •Принцип совместимости
- •Принцип открытой и наращиваемой ос
- •Принцип мобильности (переносимости)
- •Принцип обеспечения безопасности вычислений
- •Микроядерные операционные системы
- •Монолитные операционные системы
- •Требования, предъявляемые к ос реального времени
- •Мультипрограммность и многозадачность
- •Приоритеты задач (потоков)
- •Наследование приоритетов
- •Синхронизация процессов и задач
- •Предсказуемость
- •Принципы построения интерфейсов операционных систем
- •Интерфейс прикладного программирования
- •Реализация функцийApIна уровне ос
- •Реализация функцийApIна уровне системы программирования
- •Реализация функцийApIс помощью внешних библиотек
- •Платформенно-независимый интерфейс posix
- •Пример программирования в различныхApiос
- •Текст программы дляWindows(WinApi)
- •Текст программы дляLinux(posixapi)
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных процессов
- •Независимые и взаимодействующие вычислительные процессы
- •Средства синхронизации и связи при проектировании взаимодействующих вычислительных процессов
- •Использование блокировки памяти при синхронизации параллельных процессов
- •Возможные проблемы при организации взаимного исключения посредством использования только блокировки памяти
- •Алгоритм Деккера
- •Синхронизация процессов посредством операции «проверка и установка»
- •Семафорные примитивы Дейкстры
- •Мьютексы
- •Использование семафоров при проектировании взаимодействующих вычислительных процессов
- •Задача «поставщик – потребитель»
- •Пример простейшей синхронизации взаимодействующих процессов
- •Решение задачи «читатели – писатели»
- •Мониторы Хоара
- •Почтовые ящики
- •Конвейеры и очереди сообщений Конвейеры (программные каналы)
- •Очереди сообщений
- •Примеры создания параллельных взаимодействующих вычислительных процессов
- •Пример создания многозадачного приложения с помощью системы программированияBorlandDelphi
- •Пример создания комплекса параллельных взаимодействующих программ, выступающих как самостоятельные вычислительные процессы
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 7 Проблема тупиков и методы борьбы с ними
- •Понятие тупиковой ситуации при выполнении параллельных вычислительных процессов
- •Примеры тупиковых ситуаций и причины их возникновения
- •Пример тупика на ресурсах типаCr
- •Пример тупика на ресурсах типаCRиSr
- •Пример тупика на ресурсах типаSr
- •1: P(s2); 5: p(s1);
- •Формальные модели для изучения проблемы тупиковых ситуаций
- •Сети Петри
- •Вычислительные схемы
- •Модель пространства состояний системы
- •Методы борьбы с тупиками
- •Предотвращение тупиков
- •Обход тупиков
- •Обнаружение тупика
- •Обнаружение тупика посредством редукции графа повторно используемых ресурсов
- •Методы обнаружения тупика по наличию замкнутой цепочки запросов
- •Алгоритм обнаружения тупика по наличию замкнутой цепочки запросов
- •Контрольные вопросы и задачи Вопросы для проверки
- •Глава 8 Современные операционные системы
- •Семейство операционных системUnix Общая характеристика семейства операционных систем unix, особенности архитектуры семейства осunix
- •Основные понятия системыUnix
- •Виртуальная машина
- •Пользователь
- •Интерфейс пользователя
- •Привилегированный пользователь
- •Команды и командный интерпретатор
- •Процессы
- •Функционирование системыUnix
- •Выполнение процессов
- •Подсистема ввода/вывода
- •Перенаправление ввода/вывода
- •Файловая система
- •Структура файловой системы
- •Защита файлов
- •Межпроцессные коммуникации вUnix
- •Сигналы
- •Семафоры
- •Программные каналы
- •Очереди сообщений
- •Разделяемая память
- •Вызовы удаленных процедур (rpc)
- •Операционная системаLinux
- •Семейство операционных систем os/2WarpкомпанииIbm
- •Особенности архитектуры и основные возможности os/2Warp
- •Особенности интерфейса os/2Warp
- •Серверная операционная система os/2Warp4.5
- •Сетевая ос реального времениQnx
- •Архитектура системыQnx
- •Основные механизмы qnx для организации распредёленных вычислений
- •Контрольные вопросы и задачи Вопросы для проверки
- •Приложение а Тексты программы параллельных взаимодействующих задач
- •Приложение б Тексты программ комплекса параллельных взаимодействующих приложений
- •Текст программы а
- •Текст программы в
- •Текст программы d
- •Текст программы g
- •Список литературы
- •Часть 1 6
- •Глава 5 Архитектура операционных систем и интерфейсы прикладного 240
- •Глава 6 Проектирование параллельных взаимодействующих вычислительных 279
- •Глава 7 Проблема тупиков и методы 348
- •Глава 8 Современные операционные 391
Защита адресного пространства задач
Для возможности создания надёжных мультипрограммных ОС в процессорах семейства i80x86 имеется несколько механизмов защиты. Это и разделение адресных пространств задач, и введение уровней привилегий для сегментов кода и сегментов данных. Все это позволяет обеспечить как защиту задач друг от друга, так и защиту самой операционной системы от прикладных задач, защиту одной части ОС от других её компонентов, защиту самих задач от некоторых своих собственных ошибок.
Защита адресного пространства задач осуществляется относительно легко за счёт того, что каждая задача может иметь свое собственное локальное адресное пространство. Операционная система должна корректно манипулировать таблицами трансляции сегментов (дескрипторными таблицами) и таблицами трансляции страничных кадров. Сами таблицы дескрипторов как сегменты данных (а соответственно, в свою очередь, и как страничные кадры) относятся к адресному пространству операционной системы и имеют соответствующие привилегии доступа; исправлять их задачи не могут. Этими информационными структурами процессор пользуется сам, на аппаратном уровне, без возможности их читать и редактировать из пользовательских приложений. Если используется модель плоской памяти, то возможность микропроцессора контролировать обращения к памяти только внутри текущего сегмента фактически не используется, и остается в основном только механизм отображения страничных кадров. Выход за пределы страничного кадра невозможен, поэтому фиксируется только выход за пределы своего сегмента. В этом случае приходится полагаться только на систему программирования, которая должна корректно распределять программные модули в пределах единого неструктурированного адресного пространства задачи. Поэтому при создании многопоточных приложений, когда каждая задача (в данном случае – поток) может испортить адресное пространство другой задачи, эта проблема становится очень сложной, особенно если не использовать системы программирования на языках высокого уровня.
Однако для организации взаимодействия задач, имеющих разные виртуальные адресные пространства, необходимо, как мы уже говорили, иметь общее адресное пространство. И здесь, для обеспечения защиты самой ОС, а значит, и повышения надёжности всех вычислений, используется механизм защиты сегментов с помощью уровней привилегий.
Уровни привилегий для защиты адресного пространства задач
Для того чтобы запретить пользовательским задачам модифицировать области памяти, принадлежащие самой ОС, необходимо иметь специальные средства. Одного разграничения адресных пространств через механизм сегментов мало, ибо можно указывать различные значения адреса начала сегмента и тем самым получать доступ к чужим сегментам. Другими словами, необходимо в явном виде разграничивать системные сегменты данных и кода от сегментов, принадлежащих пользовательским программам. Поэтому были введены два основных режима работы процессора: пользователя и супервизора. Большинство современных процессоров имеют по крайней мере два этих режима. Так, в режиме супервизора программа может выполнять все действия и иметь доступ по любым адресам, тогда как впользовательском режимедолжны быть ограничения, с тем, чтобы обнаруживать и пресекать запрещенные действия, перехватывая их и передавая управление супервизору ОС. Часто в пользовательском режиме запрещается выполнение команд ввода/вывода и некоторых других, чтобы гарантировать, что только ОС выполняет эти операции. Можно сказать, что эти два режима имеют разные уровни привилегий.
В микропроцессорах i80x86 имеются не два, а четыреуровня привилегий.Часто уровни привилегий называют кольцами защиты, поскольку это иногда помогает объяснить принцип действия самого механизма; поэтому говорят, что некоторый программный модуль «исполняется в кольце защиты с таким-то номером». Для указания уровня привилегий используются два бита, поэтому код 00 обозначает самый высший уровень, а код 11(2)(=3) – самый низший. Самый высокий уровень привилегий предназначен для операционной системы (прежде всего, для ядра ОС), самый низкий – для прикладных задач пользователя. Промежуточные уровни привилегий введены для большей свободы системных программистов в организации надёжных вычислений при создании ОС и иного системного ПО. Предполагалось, что уровень с номером (кодом) 1 может быть использован, например, для системного сервиса – программ обслуживания аппаратуры, драйверов, работающих с портами ввода/вывода. Уровень привилегий с кодом 2 может быть использован для создания пользовательских интерфейсов, систем управления базами данных и т. п., то есть для реализации специальных системных функций, которые по отношению к супервизору ОС ведут себя как обычные приложения. Так, например, система OS/2 использует три уровня привилегий: с нулевым уровнем привилегий исполняется код самой ОС, на втором уровне исполняются системные процедуры подсистемы ввода/вывода, на третьем уровне исполняются прикладные задачи пользователей. Однако чаще всего на практике используются только два уровня – нулевой и третий. Таким образом, упомянутый режим супервизора для микропроцессоровi80x86 соответствует выполнению кода с уровнем привилегий 0 (его обозначают так:PL01). Подводя итог, можно констатировать, что именно уровень привилегий задач определяет, какие команды в них можно использовать и какое подмножество сегментов и/или страниц в их адресном пространстве они могут обрабатывать.
Основными системными объектами, которыми манипулирует процессор при работе в защищённом режиме, являются дескрипторы. Дескрипторы сегментов содержат информацию об уровне привилегий соответствующего сегмента кода или данных. Уровень привилегии исполняющейся задачи определяется значением поля привилегий, находящегося в дескрипторе её текущего кодового сегмента. Напомним, что в каждом дескрипторе сегмента (см. рис.3.3) имеется поле DPLв байте прав доступа, которое и определяет уровень привилегии связанного с ним сегмента. Таким образом, поле DPL текущего сегмента кода становится полемCPL. При обращении к какому-нибудь сегменту в соответствующем селекторе указывается запрашиваемый уровень привилегий RPL2(см. рис. 3.4).
В пределах одной задачи используются сегменты с различным уровнем привилегии и в определенные моменты времени выполняются или обрабатываются сегменты с соответствующими им уровнями привилегии. Механизм проверки привилегий работает в ситуациях, которые можно назвать межсегментными переходами (обращениями). Это доступ к сегменту данных или стековому сегменту, межсегментные передачи управления в случае прерываний (и особых ситуаций), при использовании команд CALL,JMP,INT,IRET,RET. В таких межсегментных обращениях участвуют два сегмента: целевой сегмент (к которому мы обращаемся) и текущий сегмент кода, из которого идёт обращение.
Процессор сравнивает упомянутые значения CPL,RPL,DPLи на основе понятияэффективного уровня привилегий1(EPL=max(RPL,DPL)) ограничивает возможности доступа к сегментам по следующим правилам, в зависимости от того, идёт ли речь об обращении к коду или к данным.
При доступе к сегментам данным проверяется условие CPLEPL. Нарушение этого условия вызывает так называемую особую ситуацию ошибки защиты и возникает прерывание. Уровень привилегии сегмента данных, к которому осуществляется обращение, должен быть таким же, как и текущий уровень, или меньше его. Обращение к сегменту с более высоким уровнем привилегии воспринимается как ошибка, так как существует опасность изменения данных с высоким уровнем привилегий в программе с низким уровнем привилегии. Доступ к данным с меньшим уровнем привилегии разрешается.
Если целевой сегмент является сегментом стека, то правило проверки имеет вид CPL=DPL=RPL.
В случае его нарушения также возникает исключение. Поскольку стек может использоваться в каждом сегменте кода и всего имеются четыре уровня привилегий кода, то используются и четыре стека. Сегмент стека, адресуемый регистром SS, должен иметь тот же уровень привилегий, что и текущий сегмент кода.
Правила для передачи управления, то есть когда осуществляется межсегментный переход с одного сегмента кода на другой сегмент кода, несколько сложнее. Если для перехода с одного сегмента данных на другой сегмент данных считается допустимым обрабатывать менее привилегированные сегменты, то передача управления из высоко привилегированного кода на менее привилегированный код должна контролироваться дополнительно. Другими словами, код операционной системы не должен доверять коду прикладных задач. И обратно, нельзя просто так давать задачам возможность исполнять высоко привилегированный код, хотя потребность в этом всегда имеется (ведь многие функции, в том числе и функции ввода/вывода, считаются привилегированными и должны выполняться только самой ОС). Для реализации возможностей передачи управления в сегменты кода с иными уровнями привилегий введен механизм шлюзования, который мы вкратце рассмотрим ниже. Итак, если DPL = CPL, то переход в другой сегмент кода возможен. Более подробное рассмотрение затронутых вопросов по замыслу авторов выходит за рамки настоящего учебника (для получения более детальных сведений по этому и некоторым другим вопросам особенностей архитектуры микропроцессоров i80x86 рекомендуется обратиться к материалам [1, 8]). Здесь мы рассмотрим только основные идеи.