Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

VMB

.pdf
Скачиваний:
415
Добавлен:
10.03.2016
Размер:
5.54 Mб
Скачать

Вода морів, океанів, річок і озер, як і ґрунт, є природним середовищем для існування багатьох видів бактерій, грибів, найпростіших, а також мікроскопічних водоростей. У ґрунтових водах містяться поодинокі мікроорганізми. Основний фактор, який визначає кількість мікробів у воді, – наявність у ній необхідних живильних субстратів. Чим більше вода забруднена органічними речовинами, чим більше в неї потрапляє відходів і нечистот, тим більше в ній бактерій. Отже, вода рік, які протікають через населені пункти і вбирають масу стоків і каналізаційних вод, містить величезну кількість мікроорганізмів.

Мікрофлора води поділяється на власну (автохтонну) і випадкову (заносну). До постійних бактерій належать актиноміцети, мікрококи, псевдомонади, спірохети, непатогенні вібріони. Із морської води прибережних зон систематично висіваються вібріони, які спричиняють у людей гострі гастроентерити від вживання малосольної морської риби, креветок, мідій.

При забрудненні водоймищ стічними водами виявляють багато кишкових паличок, ентерококів, клостридій, спірил, вібріонів, ентеровірусів і ротавірусів. Анаеробні бактерії у воді зустрічаються рідко. Інколи в неї заносяться і певний час зберігаються хвороботворні мікроорганізми. Так, спори сибіркових бацил зберігаються у воді роками,ентеровіруси, вірус гепатиту А, лептоспіри - кілька місяців, а збудники дизентерії, холери, бруцельозу - ще менше (дні, тижні). Отже, вода може стати фактором передачі багатьох інфекційних хвороб.

Санітарно-показовим мікробом для води є кишкова паличка (Escherichia coli). Доброякісна питна вода повинна відповідати певним вимогам державного стандарту. Наказом МОЗ України від 23.12.1996

131

р. затверджено Державні санітарні правила і норми "Вода питна. Гігієнічні вимоги до якості води централізованого господарськопитного водопостачання". Вимоги їх обов'язкові для всіх органів, установ, організацій та закладів, посадових осіб і громадян, причетних до забезпечення водою населення України. Наводимо основні мікробіологічні показники, які регламентують безпеку питної води

(табл. 4.1).

Таблиця 7.1 Мікробіологічні показники безпеки питної води

Показники

Одиниці виміру

Нормативи

 

 

 

 

1.

Число бактерій в 1 см3 води (ЗМЧ)

КУО/см3

не більше 100

2.

Число бактерій групи кишкових

КУО/дм3

не більше 3

 

паличок в 1 дм3 води (індекс БГКП)

 

 

 

 

 

 

3.

Число патогенних бактерій в 1 дм3

КУО/дм3

відсутність

 

води

 

 

 

 

 

 

4.

Число патогенних бактерій в 1 дм3

КУО/дм3

відсутність

 

води

 

 

 

 

 

 

5.

Число коліфагів в 1 дм3 води

КУО/дм3

відсутність

Примітки: КУО - колонієутворюючі одиниці (мікроорганізми); БУО - бляшкоутворюючі одиниці

7.3 Мікрофлора повітря

Атмосферне повітря є несприятливим середовищем для розмноження мікроорганізмів. У ньому відсутні поживні речовини, часто недостатня вологість і неоптимальна температура, а висушування і

132

сонячне проміння згубно впливають на бактерії та віруси. У повітря мікроби потрапляють, головним чином, із ґрунту, рослин і тварин, продуктів і відходів деяких виробництв. Видовий і чисельний склад мікрофлори повітря незначний. Він дуже варіабельний, динамічний і значною мірою залежить від опадів, температури, інтенсивності сонячної радіації та наявності диму, пилу, кіптяви. Найчастіше в атмосферному повітрі знаходять актиноміцети, сарцини, мікрококи, бацили, гриби. Кількість мікроорганізмів у робочих і житлових приміщеннях тісно пов'язана з санітарно-гігієнічним режимом. При скупченні людей, поганій вентиляції, неправильному прибиранні кількість бактерій у повітрі зростає. В закритих приміщеннях у повітряний простір мікрофлора потрапляє в основному з поверхні шкіри і верхніх дихальних шляхів людини чи тварин. Патогенні мікроорганізми потрапляють у повітря від хворих людей та тварин або бактеріоносіїв при чханні, кашлі. Розсіювання бактерій і вірусів найбільш інтенсивно відбувається при чханні. Навіть короткого перебування збудників у повітрі досить для того, щоб передати їх від хворої до здорової людини (тварини). Так, повітряно-краплинним способом передаються дифтерія, коклюш, скарлатина у людини, інфекційний ринотрахеїт, парагрип у великої рогатої худоби, туберкульоз, аденовірусна інфекція та ін. у людини ітварин.

Оцінку чистоти повітря закритих приміщень проводять на основі визначення загальної кількості мікробів в 1 м3 і наявності санітарно-показових бактерій – гемолітичних стрептококів і золотистих стафілококів. Особливо важливий контроль за мікробним забрудненням повітря у хірургічних, акушерських та дитячих стаціонарах, де виникнення госпітальних інфекцій найбільш небезпечне. На жаль, державний стандарт для оцінки мікробного

133

обсіменіння повітря лікарняних закладів ще не розроблено. Для основних приміщень хірургічних відділень і пологових будинків запропоновано тимчасове положення про нормування мікробного забруднення повітряного середовища. Згідно з цим положенням, загальна кількість бактерій в операційній не повинна перевищувати 500 в 1 м3, а після операції – 1000. Гемолітичні стрептококи і золотисті стафілококи не повинні виявлятись в 250 л повітря.

Для знезараження повітря лікарняних закладів використовують ультрафіолетове і кварцове опромінювання, аерозолі дезинфікуючих розчинів.

7.4 Значення мікроорганізмів у природі

Біосфера сформувалась біля 3 млрд років тому. Тоді єдиними "жителями" Землі були прокаріотичні бактерії, які відіграли велику роль у її створенні. Сьогодні сумарна маса мікроорганізмів планети складає понад 740 млрд т, тоді як всіх рослин - 550, тварин -лише 15 млрд т. При цьому ферментативна активність біомаси бактерій у десятки разів перевищує цей процес у рослин і тварин. Таке широке розповсюдження мікроорганізмів, участь у глибокому розщепленні різноманітних органічних сполук зумовлює їх колосальну роль у кругообігу речовин і енергії в природі. Із трупами тварин і рослин у ґрунт і воду постійно надходить велика кількість органічних сполук, переважно білкової і вуглеводневої природи. Із виділеннями людей і тварин у довкілля потрапляє сечовина, сечова кислота, продукти білкового розкладу. Ці азотовмісні сполуки безперервно розкладаються бактеріями й повністю мінералізуються до амонійних і азотнокислих солей. Мікроорганізми - чудові санітари Землі. Вони очищають нашу планету від нечистот,

134

розкладають їх до мінеральних солей і природа знову дістає можливість творити дивовижний органічний світ. Деякі мікроби здатні засвоювати з повітря елементарний азот і відкладати його у вигляді складних азотистих сполук, що збагачує ґрунт і підвищує врожайність полів. Усі ці процеси розкладу і синтезу азотистих речовин лежать в основі грандіозного кругообігу азоту в природі. Існують мікроорганізми, які з діоксиду вуглецю, карбонатів і мінеральних речовин синтезують вуглеводи. Інші види в результаті бродіння знову перетворюють їх у діоксид вуглецю і карбонати. Ці процеси складають кругообіг вуглецю. Подібна трансформація відбувається з сіркою, залізом, фосфором та іншими елементами. Надзвичайно важливо оберігати екологічну рівновагу в біосфері, захищати від промислових викидів групи мікроорганізмів, які здійснюють кругообіг речовин у природі. Адже шкідливі впливи порушують екологічний баланс, пригнічують життєдіяльність корисних організмів у екосистемах, і вони часто гинуть.

7.5.РОЛЬ МІКРООРГАНІЗМІВ У КРУГООБІГУ РЕЧОВИН

УРИРОДІ

Мікроорганізми є обліuатним компонентом біосфери планети та мають суттєве значення в кругообігу речовин у природі. Щоб ознайомитись з названою функцією мікроорганізмів важливо

проаналізуємо їх роль у перетворенні азоту, вуглецю та деяких інших речовин.

7.5.1Роль мікроорганізмів у кругообігу вуглецю.

135

Як відомо, зелені рослини за допомогою енергії Сонця синтезують з вуглекислого газу повітря і води різні органічні речовини,зокрема вуглеводи. Приблизний розрахунок синтезованих рослинами вуглеводів сягає десятків міліардів тон щороку Розпад органічних речовин може відбуватись двома основними

шляхами – фітогенним та зоогенним.

Фітогенний розпад органічних речовин здійснюється за участю бактерій, грибів,актиноміцетів , а зоогенний – за участю різних тварин

– від найпростіших протозоа до ссавців. Фітогенний розпад органічних речовин за інтенсивністю значно переважає зоогенний. Інтенсивність розпаду органічних речовин залежить як від хімічного їх складу так і від наявності відповідних фітогенних (зоогенних) факторів. Швидше розпадаються прості і мало полімеризовані цукри (моно-, дисахарриди) , повільнішеполісахариди, жири. В залежності від умов середивища органічні речовини можуть розщеплюватись аеробними чи анаеробними мікроорганізмами. У першому випадку кінцевими продуктами розщеплення буде вода та вуглекислий газ, в останньому – кислоти і спирти. Розщеплення органічних речовин в анаеробних умовах відкрив Л.Пастер та назвав його бродінням.

Залежно від переважаючої кількості продуктів, які виділяються під час розпаду органічних речовин розрізняють: спиртове, молочнокисле, пропіоновокисле, маслянокисле та інші види бродінь.

Кожен тип бродінь викликає певна група мікроорганізмів.

7.5.2. Спиртове бродіння

136

Спиртове бродіння надзвичайно поширене. Це процес розкладу цукру мікроорганізмами на спирт і вуглекислий газ.

С6Н12О6 = 2СН3СН2ОН+2СО2.

Збудниками спиртового бродіння є дріжджі, деякі мукорові гриби і бактерії. В природі дріжджі надзвичайно поширені. Їх знаходять на повехні рослин, овочів і фруктів та ін. Так звані дикі дріжджі обумовлюють бродіння під час приготування вина у домашніх умовах. Вони витримують концентрацію спирту до 13оС, що і лімітує міцність сухих вин. У промисловості використовують переважно ь дріжджі двох видів - Saccharomyces cerevisiае та Saccharomyces ellipsoides.

Будь-яке бродіння відбувається в дві стадії: перша — окислення, яка включає перетворення глюкози до піровиноградної кислоти і відняття двох пар водню (при окисленні 3-фосфогліцеринового альдегіду), і друга — відновлення, коли НАД•Н2 передає водень кінцевому акцепторові.

За спиртового бродіння піровиноградна кислота, яка утворилася на стадії окислення, не перетворюється на ацетил-КоА, як при аеробному метаболізмі, а декарбоксилюється до оцтового альдегіду.

Цю реакцію каталізує дріжджовий фермент піруватдекарбоксилаза - ключовий фермент спиртового бродіння. Оцтовий альдегід відіграє роль кінцевого акцептора водню. Вступаючи у взаємодію з НАД • Н2, він відновлюється до етанолу, а НАД • Н2 окислюється до НАД: 2СН3СНО+2НАД-Н2 = 2СН3СН2ОН+2НАД.

Ця реакція каталізується ферментом алкогольдегідрогеназою.

137

Поряд із головним продуктом бродіння — С2Н5ОН і СО2 у невеликій кількості утворюються побічні продукти: гліцерол, оцтовий альдегід, оцтова і янтарна кислоти, сивушні олії — суміш вищих спиртів. Походження сивушних олій (вищих спиртів — бутилового, ізобутилового, ізоамілового) пов'язане з перетворенням амінокислот, які утворюються у процесі живлення дріжджів. Сивушні олії утворюються дезамінуванням і декарбоксилюванням окремих амінокислот під дією ферментів дріжджів. Наприклад, у разі гідролітичного дезамінування лейцину утворюється ізоаміловий спирт.

Відомо понад 200 видівдріжджів - сахароміцетів. Найважливіше значення для промисловості має Saccharomyces cerevisiae. Виробничі дріжджі поділяють на верхові (хлібопекарські, спиртові, винні) і низові (пивні).

Найкращою концентрацією цукру в бродильному середовищі для переважної більшості рас дріжджів є 10—15 %, оптимальне рН=4 ...

5, температура 20—28 °С. При порівняно високих температурах (до 30 °С) найчастіше відбувається, так зване, верхове бродіння, яке спричиняють раси верхових дріжджів. Цей вид бродіння використовують у виробництві спирту і хлібопекарських дріжджів.

При низьких температурах (5-10 °С) відбувається низове бродіння, яке зумовлюють раси низових дріжджів. Ці раси, на відміну від верхових, повністю зброджують рафінозу і не виносяться на поверхню бродильного субстрату. Низове бродіння використовують у пивоварному виноробстві.

При надмірному доступі кисню дріжджі розпочинають окислювати вуглеводи., тобто бродильний процес змінюється на дихальний (аеробний). При цьому суттєво зростає коефіцієнт

138

використання вуглеводів і збільшення біомаси дріжджів. Останнє важливе під час отримання пекарських дріжджів, тому у таких випадках живильне середовище , де їх культивують, піддають інтенсивній аерації. При виробництві етилового спирту, навпаки, створюють анаеробні умови.

7.5.3. Молочнокисле бродіння

Молочнокисле бродіння – це процес перетворення цукру в молочну кислоту в результаті життєдіяльності молочнокислих бактерій.

Молочнокисле бродіння люди використовували з давніх часів, однак природа його була з»ясована Луї Пастером лише у 1857 р., який довів, що молочнокисле бродіння викликається мікроорганізмами, проте виділити збудників цього бродіння у вигляді чистих культур йому не вдалось. Чиста культура збудників молочнокислого бродіння була виділена лише в 1878 р. Нині відомо багато різних бактерій, які ферментують цукор із утворенням молочної кислоти. При цьому, деякі з них перетворюють цукор лише в молочну кислоту, інші, поряд з молочною кислотою, утворюють ще й побічні продукти (оцтову, янтарну кислоти, етиловий спирт, вуглекислий газ, водень та інші продукти).

Якщо в процесі молочнокислого бродіння із цукру утворюється лише молочна кислота, його називають типовим (гомоферментативним) молочнокислим бродінням. Якщо жприбродінні поряд із молочною кислотою утворюються інші продукти, - процес

139

називається нетиповим (гетероферментативним молочнокислим бродінням).

Процес типового молочнокислого бродіння можна виразити таким сумарним рівнянням:

Це лише узагальнені рівняння, а насправді процес відбувається за дуже складною схемою, через низку проміжних продуктів.

До моменту утворення піровиноградної кислоти процес проходить за такою ж схемою, як і спиртове бродіння. Далі, у зв'язку з відсутністю у молочнокислих бактерій ферменту карбоксилази (піроватдекарбоксилази), реакція декарбоксилювання піровиноградної кислоти не відбувається. Натомість, завдяки ферменту лактиколегілгюгенази, що притаманний молочнокислим бактеріям, піровиноградна кислота вступає в окисно-відновну реакцію з фосфогліцериновим альдегідом. При цьому, в результаті відновлення піровиноградної кислоти, утворюється молочна кислота, а в результаті окиснення фосфогліцеринового альдегіду - фосфогліцеринова:

140

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]