Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Диф Рівняння.doc
Скачиваний:
42
Добавлен:
07.03.2016
Размер:
804.35 Кб
Скачать

5.Диференціальні рівняння, що допускають зниження порядку

І. Рівняння виглядуу(n) = f (x). Після n-кратного інтегрування одержуємо загальний розвязок

ІІ. Рівняння не містить шуканої функції та її похідних до порядку k-1 включно:

F (x, y(k), y(k+1),..., y(n)) = 0 (1)

Порядок такого рівняння можна знизити на k одиниць заміною y(k) (х) = р(х). Тоді рівняння (1) набуває вигляду:

F (x, р, р,..., р(n-k)) = 0

Із останнього рівняння, якщо це можливо, визначаємо р (x, C1, C2,...,Cn-k), а потім знаходимо у із рівняння y(k) = f(x, C1, C2,..., Cn-k) k-кратним інтегруванням.

ІІІ. Рівняння не містить незалежну змінну:

F (y, у, у,..., y(n)) = 0.

Підстановкау = р дозволяє знизити порядок рівняння на одиницю. При цьому р розглядаємо як нову невідому функцію від у: р = р (у). Всі похідні у, у,..., у(n) виражаються через похідні від нової невідомої функції р від у:

Підставляючи ці вирази замість у, у,..., у(n) в рівняння, одержуємо диференціальне рівняння (n-1)-ого порядку.

П р и к л а д 8. Проінтегрувати рівняння у + уtgх = sin2x.

Р о з в я з о к. Це рівняння не містить у. Вводимо нову змінну y = z, y = z, одержимо: z + z tgх = sin2x.

Це лінійне диференціальне рівняння І порядку. Поклавши в ньому z = uv, z = uv + uv, маємо:

uv + uv + uv tgх = sin2x,

uv + u(v + v tgх) = sin2x,

Визначаємо v, поклавши v + vtgx = 0:

звідсиln|v| =  ln|cosx|, або v = cosx.

Визначаємо u(x):

ucosx = 2 sinx cosx, du = 2 sinx dx, u = 2 cosx + C1.

Отже, z = (2 cosx + C1) cosx, z = 2 cos2 x + C1 cosx.

Повертаючись до змінноїу, одержимо:

Це і буде загальним розвязком даного диференціального рівняння.

П р и к л а д 9. Проінтегрувати диференціальне рівняння у = (у)2.

Ро з в я з о к. Введемо нову функцію z = y, тоді одержимо рівняння першого порядку відносно невідомої функції z(x):

Відокремлюємо змінні і проінтегруємо:

Звідси

Послідовно інтегруючи, маємо:

Замінивши С2 + 1 на С2, а С3 + С1 на С3, одержуємо загальний розвязок:

y =  (x + C1) ln (x + C1) + C2х + C3.

П р и к л а д 10. Проінтегрувати рівняння 2(у)2 = (у  1) y.

Р о з в я з о к. Поклавши в цьому рівнянні у = р, у =, одержимо диференціальне рівняння першого порядку:

Прирівнюючи перший множник до нуля, маємо:

Перевірка показує, що у = С (у = 0, у = 0) задовольняє дане рівняння, отже, є розвязком.

Загальний розвязок даного диференціального рівняння одержимо, проінтегрувавши рівняння з відокремлюваними змінними= 0:

Отже, загальний інтеграл має вигляд

1х + С2)(1  у) = 1.



6.Лінійні однорідні рівняння 2-го порядку

Рівняння вигляду

а0у + а1у + а2у = 0 (1),

де а0, а1, а2  сталі, називається лінійним однорідним рівнянням другого порядку із сталими коефіцієнтами.

ТЕОРЕМА. Якщоу1(х) і у2(х)  частинні розвязки рівняння а0у + а1у + а2у = 0, причому їх відношення , тоу = С1у1(х) + С2у2(х) (2) є загальним розвязком цього рівняння.

Ці розвязки у1(х) і у2(х) знаходять у вигляді у = еkx, де k  невизначене стале (дійсне або уявне). Для знаходження k складають характеристичне рівняння

a0k2 + a1k + a2 = 0 (3)

Зауважимо, що характеристичне рівняння складається з даного рівняння (1) шляхом заміни у,у,увідповідно наk2,k, 1.

Розвязуючи рівняння (3), знаходимо його кореніk1іk2. Можливі такі три випадки:

Таблиця 1

Корені рівняння (3)

Частинні розвязки (1)

Загальний розвязок (1)

1) Дійсні різні

k1k2

2) Рівні

k1=k2

3) Комплексні спряжені

  і

П р и к л а д 11. Знайти загальні розвязки рівнянь: а) у – 2у–3у = 0;

б) у – 6 у +9 у = 0; в) 4 у  – 4 у +3 у = 0; г) у +25у = 0

Р о з в я з о к.

а)Запишемо характеристичне рівняння для даного диференціального:

k2 2k –3 = 0.

Корені цього рівняння k1= 3,k2= –1 дійсні і різні, тому маємо (таблиця 1, формула 1):

у= С1е+ С2е–х.

б)Характеристичне рівнянняk2– 6k+ 9 = 0 має кореніk1=k2= 3 – дійсні і рівні, тому за формулою (2) табл. 1 маємо:

у= С1е+хС2е, або у = е1+хС2).

в)Характеристичне рівняння 4k2 – 4k + 3 = 0 має два уявних спряжених корені

Отже, за формулою (3) табл.1 загальний розвязок має вигляд:

г)Характеристичне рівнянняk2+ 25 = 0 має чисто уявні кореніk1= 5iіk2= –5i(= 0). Тому, згідно з формулою (3) табл.1 дістаємо:

у= С1cos5x+ C2sin5x.

П р и к л а д 12. Розвязати задачу Коши:

у – 6у + 5 у = 0, у (0) = 2, у (0) = 2.

Р о з в я з о к. Спочатку знаходимо загальний розвязок цього рівняння. Складаємо його характеристичне рівняння:k2 – 6 k + 5 = 0; його кореніk1= 1,k2= 5, отже:

у= С1ех+ С2е.

Тепер використаємо початкові умови для знаходження С1і С2.

Підставляючи х= 0 іу= 2 у загальний розвязок, дістаємо: 2 = С1е0+ С2е0, або С1+ С2= 2.

Візьмемо похідну у від загального розвязку:

у= С1ех+ 5 е,

підставляємо сюди значення х= 0 іу= –2. Маємо: –2 = С1е0+ 5С2е0,

або С1+ 5С2= –2.

Для визначення С1і С2потрібно розвязати систему рівнянь:

Розвязком цієї системи є С1= –1 і С2= 3. Підставляючи значення С1і С2у загальній розвязок, дістанемо шуканий частинний розвязок, тобто розвязок задачі Коши:

у= –ех+ 3е.

