
- •Технологии транспортных телекомуникационно-информационных сетей
- •Лекция №1 Плезиохронная цифровая иерархия - pdh
- •1. Общая харакктристика pdh
- •Лекция №2. Введение в технологию синхронной иерархии sonet/sdh
- •1. Общая характеристика sdh
- •2. Общие особенности построения синхронной иерархии
- •Лекция №3. Схемы мультиплексирования потоков в sdh
- •1. Обобщенная схема мультиплексирования потоков в sdh (первая редакция)
- •2.Обобщенная схема мультиплексирования потоков в sdh (третья редакция)
- •3. Пример формирования модуля stm-1 из триба е1 (редакция etsi)
- •Лекция №4. Формирование фреймов stm-n в sdh
- •1. Структура модулей stm-n (etsi)
- •2. Структура заголовка soh фрейма stm-1
- •3. Структура маршрутных заголовков рoh
- •4. Структура указателей административных и трибных блоков
- •Лекция №5. Состав сети sdh.
- •1. Функциональные задачи модулей сетей sdh
- •2. Функциональные модули сетей sdh
- •Линейные тракты сци
- •Лекция №6 Топологии и архитектура сетей sdh
- •1. Топологии сети sdh
- •2. Архитектура сети sdh.
- •3. Методы защиты синхронных потоков
- •Лекция №7 Синхронизация сетей sdh
- •1. Назначение системы синхронизации
- •2. Иерархия источников синхросигналов
- •3. Архитектура системы синхронизации
- •4. Реконфигурация системы синхронизации на основе ssm и
- •5. Примеры синхронизации сети sdh
- •Лекция №8 Система контроля и управления сетью sdh
- •1. Назначение системы контроля и управления сетью
- •2. Четырехуровневая модель управления сетью
- •3. Функциональные блоки и архитектура tmn
- •5. Адрес точки доступа сетевого сервиса nsap
- •6. Управляющие системы em-os и nm-os
- •Конфигурирование кросс-соединений - может быть осуществлено элемент-менеджером по специальной таблице кросс-соединений, формируемой в процессе конфигурирования узла.
- •Лекция №9 Аппаратная реализация сетевых элементов сетей sdh
- •1. Пример мультиплексора уровня stm-1
- •2. Пример мультиплексора уровня stm-4
- •3. Технические характеристики оборудования сетей sdh
- •Лекция №10 Проектирование сети sdh
- •1. Техническое задание на проектирование сети sdh
- •2. Выбор топологии сети
- •4. Конфигурация мультиплексорных узлов и составление спецификации оборудования
- •5. Формирование сети управления
- •6. Формирование сети синхронизации
- •7 Соединение и конфигурирование узлов и маршрутизация потоков
- •Лекция №11 Системы sdh следующего поколения (Next Generation sdh, ng sdh)
- •1. Передача пакетного трафика в «классической» сети sdh
- •2. Ng sdh – общие положения
- •Компоненты ng sdh
- •3. Конкатенация в sdh
- •4. Управление шириной коридора. Lcas
- •5. Общая процедура разбиения на кадры (General Framing Procedure, gfp
- •6. Ethernet поверх sdh
- •Лекция №12 Спектральное уплотнение каналов - wdm
- •1. Общие положения
- •Принцип работы систем со спектральным уплотнением
- •2. Виды wdm систем
5. Примеры синхронизации сети sdh
Пример синхронизации кольцевой сети SDH
Основным требованием при формировании сети синхронизации является наличие основных и резервных путей распространения сигнала синхронизации. Однако, и в том и в другом случае должны строго выдерживаться топология иерархического дерева и отсутствовать замкнутые петли синхронизации. Другим требованием является наличие альтернативных хронирующих источников. Идеальная ситуация, когда альтернативные источники проранжированы в соответствии с их приоритетом и статусом.
При аккуратном формировании сетевой синхронизации можно избежать возникновения замкнутых петель синхронизации как в кольцевых, так и в ячеистых сетях. Использование сообщений о статусе синхронизации позволяет в свою очередь повысить надежность функционирования сетей синхронизации. На рис. 7.7 приведена схема синхронизации кольцевой сети SDH, где верхняя схема соответствует нормальному функционированию сети, а нижняя - сбою, вызванному разрывом кабеля между узлами В и С.
Схема использует ставший классическим иерархический метод принудительной синхронизации. Один из узлов (узел А) назначается ведущим (или мастер-узлом) и на него подается сигнал синхронизации от внешнего PRC. От этого узла основная синхронизация (источник первого приоритета) распределяется в направлении против часовой стрелки, т.е. к узлам В, С и D. Синхронизация по резервной ветви (источник второго приоритета) распределяется по часовой стрелке, т.е. к узлам D, С и В. Начальное распределение хронирующих источников по узлам сведено в таблицу 7.2.
а)
б)
Рисунок 7.8 – Схема синхронизации кольцевой сети: а) при нормальном функционировании, б) при обрыве связи
Таблица 7.2 – Распределение источников синхронизации кольцевой сети
При разрыве кабеля между узлами В и С узел С, не получая сигнала синхронизации от узла В, переходит в режим удержания синхронизации и посылает узлу D сообщение о статусе SETS уровня качества синхронизации. Узел D, получив сообщения об уровне качества синхронизации от А и С и выбрав лучший (от А), посылает узлу С сообщение "PRC" вместо "Don't use". Узел С, получив это сообщение от узла D, изменяет источник синхронизации на "PRC" от D.
Пример синхронизации ячеистой сети SDH
Рассмотрим пример формирования цепей синхронизации в ячеистой сети SDH. Сеть имеет 12 узлов и несложную транспортную топологию звезды, включающую несколько линейных участков, связанных через узлы концентраторов.
Для облегчения задачи построения сети синхронизации схема разбивается на несколько цепей синхронизации, учитывая при этом особенности топологии исходной транспортной сети. Полученные цепи: W, X, Y, Z - показаны в нижней части рис. 7.8. Цифрами 1 и 2 на этом рисунке показаны приоритеты в использовании сигналов синхронизации. Сплошной линией показаны основные каналы синхронизации, пунктиром - резервные каналы синхронизации. Мастер-узлы заштрихованы.
Для распределения синхронизации используется та же иерархическая схема. Каждая цепь синхронизации может быть обеспечена одним или двумя узлами, получающими синхронизацию от внешних источников (PRC). Эти узлы называют мастер-узлами. Источник PRC, расположенный на основной станции, является внешним PRC, от которого получают синхронизацию два мастер-узла W и X цепей W и X. Цепи Y и Z имеют общий мастер-узел Y&Z, который получает сигнал синхронизации от последнего узла цепи X. Суть предложенного решения состоит в организации альтернативного пути передачи сигнала синхронизации в каждой цепи. Проблемы могут возникнуть только при низкой надежности связи, обеспечивающей синхронизацию мастер-узлу Y&Z. В этом смысле для этого мастер-узла логично использовать локальный первичный эталон LPR.
Рисунок 7.9 – Схема синхронизации ячеистой сети