- •Технологии транспортных телекомуникационно-информационных сетей
- •Лекция №1 Плезиохронная цифровая иерархия - pdh
- •1. Общая харакктристика pdh
- •Лекция №2. Введение в технологию синхронной иерархии sonet/sdh
- •1. Общая характеристика sdh
- •2. Общие особенности построения синхронной иерархии
- •Лекция №3. Схемы мультиплексирования потоков в sdh
- •1. Обобщенная схема мультиплексирования потоков в sdh (первая редакция)
- •2.Обобщенная схема мультиплексирования потоков в sdh (третья редакция)
- •3. Пример формирования модуля stm-1 из триба е1 (редакция etsi)
- •Лекция №4. Формирование фреймов stm-n в sdh
- •1. Структура модулей stm-n (etsi)
- •2. Структура заголовка soh фрейма stm-1
- •3. Структура маршрутных заголовков рoh
- •4. Структура указателей административных и трибных блоков
- •Лекция №5. Состав сети sdh.
- •1. Функциональные задачи модулей сетей sdh
- •2. Функциональные модули сетей sdh
- •Линейные тракты сци
- •Лекция №6 Топологии и архитектура сетей sdh
- •1. Топологии сети sdh
- •2. Архитектура сети sdh.
- •3. Методы защиты синхронных потоков
- •Лекция №7 Синхронизация сетей sdh
- •1. Назначение системы синхронизации
- •2. Иерархия источников синхросигналов
- •3. Архитектура системы синхронизации
- •4. Реконфигурация системы синхронизации на основе ssm и
- •5. Примеры синхронизации сети sdh
- •Лекция №8 Система контроля и управления сетью sdh
- •1. Назначение системы контроля и управления сетью
- •2. Четырехуровневая модель управления сетью
- •3. Функциональные блоки и архитектура tmn
- •5. Адрес точки доступа сетевого сервиса nsap
- •6. Управляющие системы em-os и nm-os
- •Конфигурирование кросс-соединений - может быть осуществлено элемент-менеджером по специальной таблице кросс-соединений, формируемой в процессе конфигурирования узла.
- •Лекция №9 Аппаратная реализация сетевых элементов сетей sdh
- •1. Пример мультиплексора уровня stm-1
- •2. Пример мультиплексора уровня stm-4
- •3. Технические характеристики оборудования сетей sdh
- •Лекция №10 Проектирование сети sdh
- •1. Техническое задание на проектирование сети sdh
- •2. Выбор топологии сети
- •4. Конфигурация мультиплексорных узлов и составление спецификации оборудования
- •5. Формирование сети управления
- •6. Формирование сети синхронизации
- •7 Соединение и конфигурирование узлов и маршрутизация потоков
- •Лекция №11 Системы sdh следующего поколения (Next Generation sdh, ng sdh)
- •1. Передача пакетного трафика в «классической» сети sdh
- •2. Ng sdh – общие положения
- •Компоненты ng sdh
- •3. Конкатенация в sdh
- •4. Управление шириной коридора. Lcas
- •5. Общая процедура разбиения на кадры (General Framing Procedure, gfp
- •6. Ethernet поверх sdh
- •Лекция №12 Спектральное уплотнение каналов - wdm
- •1. Общие положения
- •Принцип работы систем со спектральным уплотнением
- •2. Виды wdm систем
4. Реконфигурация системы синхронизации на основе ssm и
таблиц приоритетов
Сообщения о статусе синхронизации
Сообщения SSM передаются последовательно по всей цепи синхронизации и несут информацию об уровне качества источника синхронизации, находящегося в начале этой цепи.
Возможные уровни качества источников синхросигналов и соответствующие сообщения о статусе синхронизации приведены в таблице 7.1.
Таблица 7.1 – Сообщения о статусе синхронизации

Каналы передачи SSM
В сетях СЦИ сообщения об уровне качества источника синхросигнала переносятся сигналами STM-N в битах 5… 8 байта S1 секционного заголовка.
Для сигналов 2048 кГц и 2048 кбит/с, не несущих SSM, виртуальные уровни качества устанавливаются оператором при конфигурировании системы синхронизации сетевых элементов.
Выбор источника синхронизации на основе SSM
Алгоритм выбора источника синхронизации на основе SSM и включает следующие процедуры:
• считывание сообщений об уровне качества всех доступных источников синхронизации;
• сортировку источников синхронизации в соответствии с уровнем качества;
• сортировку источников с высшим качеством по уровню приоритета;
• выбор источника высшего уровня качества и высшего приоритета;
• передачу сообщения «DNU» (не использовать для синхронизации) в направлении используемого источника синхронизации и передачу сообщения об уровне качества выбранного источника в другие направления.
Рассмотрим процессы автоматической реконфигурации цепей синхронизации на примере схемы, приведенной на рис. 8.28.
При отсутствии аварии синхронизация сетевых элементов осуществляется от ПЭГ (рис.8.28а).

Рисунок 7.7 - Реконфигурация участка сети синхронизации при пропадании сигнала от ПЭГ
Сетевой элемент СЭ1 работает в режиме внешней синхронизации по опорному сигналу первого приоритета, поступающему от ПЭГ. В исходящих потоках STM-N передаются сообщения «PRC».
Сетевые элементы СЭ2 и СЭ3 работают в режиме линейной синхронизации.
Для предотвращения образования петли синхронизации в исходящих сигналах STM-N стороны «Запад» передаются сообщения «DNU» - «не использовать для синхронизации».
Блок ВЗГ работает в режиме внешней синхронизации по опорному сигналу, выделенному из входящего сигнала STM-N стороны «Запад» сетевого элемента СЭ4.
Сетевой элемент СЭ4 работает в режиме внешней синхронизации от ВЗГ. В исходящих сигналах STM-N передаются сообщения «SSU».
При повреждении синхротрассы и пропадании сигнала от ПЭГ начинается процесс реконфигурации сети синхронизации (рис.8.28б).
Сетевой элемент СЭ1 обнаруживает пропадание сигнала от ПЭГ и переходит в режим удержания, поскольку сигнал второго приоритета несет сообщение «DNU». При этом в байтах S1 исходящих сигналов STM-N передаются сообщения «SEC».
Сетевой элемент СЭ2 продолжает работать в режиме линейной синхронизации с линии «Запад» и передает в направлении «Восток» сообщение «SEC», соответствующее качеству опорного сигнала, а в направлении «Запад» - сообщение «DNU» для предотвращения образования петли синхронизации.
Сетевой элемент СЭ3 выбирает в качестве действующего синхросигнал второго приоритета с линии «Восток», поскольку уровень качества сигнала первого приоритета с линии «Запад» оказывается ниже.
Для предотвращения образования петли синхронизации в исходящем потоке направления «Восток» передается сообщение «DNU».
Сетевой элемент СЭ4 обнаруживает в линейном сигнале STM-N стороны «Запад» сообщение DNU и отключает выходной сигнал внешней синхронизации, поступавший на ВЗГ. В результате предотвращается образование петли синхронизации между элементами СЭ3, СЭ4 и ВЗГ.
Блок ВЗГ при пропадании внешнего синхросигнала с первым приоритетом и отсутствии других синхросигналов переходит в режим удержания.
Сетевой элемент СЭ4 продолжает синхронизироваться от ВЗГ, поскольку опорный сигнал от ВЗГ имеет первый приоритет и достаточно высокое качество. В исходящих сигналах STM-N передаются сообщения SSU.
На завершающем этапе реконфигурации системы синхронизации сетевые элементы СЭ2 и СЭ1 выбирают для синхронизации сигнал второго приоритета с более высоким уровнем качества и последовательно переходят в режим линейной синхронизации по сигналу ВЗГ, выделяемому из входящих сигналов STM-N стороны «Восток».
Таким образом, после обнаружения аварии система синхронизации изменилась так, что все сетевые элементы синхронизируются от ВЗГ (рис.8.28в).
После восстановления синхротрассы между ПЭГ и СЭ1 на входе внешней синхронизации сетевого элемента СЭ1 появляется опорный сигнал с уровнем качества PRC. Сетевой элемент СЭ1 выбирает этот сигнал в качестве действующего синхросигнала. При этом сообщение «DNU» с направления «Восток» заменяется на «PRC».
Сетевые элементы СЭ2 и СЭ3 последовательно переключаются на синхросигнал первого приоритета «PRC», получаемый с направления «Запад», и заменяют в исходящих потоках STM-N сообщения «DNU» на «PRC».
Сетевой элемент СЭ4 обнаруживает отсутствие сообщения «DNU» во входящем сигнале STM-N направления «Запад» и переключается на использование этого сигнала в качестве опорного для выхода внешней синхронизации.
Блок ВЗГ при появлении сигнала PRC с первым приоритетом переходит из режима удержания в режим внешней синхронизации.
Таким образом, система синхронизации автоматически возвращается в исходное состояние, существовавшее до появления аварии (рис8.28а).
