- •Курс лекций
- •2. Решение волнового уравнения методом Фурье
- •Кратные интегралы Лекция № 51. Тема 1: Определение кратного интеграла
- •1.1. Задачи, приводящие к понятию кратного интеграла
- •1.2. Определение кратного интеграла и его основные свойства
- •Тема 2: Двойной интеграл
- •2.1. Определение двойного интеграла
- •2.2. Вычисление двойного интеграла.
- •Лекция № 52
- •2.3. Замена переменных в двойном интеграле.
- •2.4. Двойной интеграл в полярной системе координат
- •2.5. Приложения двойного интеграла
- •. Лекция № 53
- •Лекция № 54. Тема 3 : Тройной интеграл
- •3.1. Определение и вычисление тройного интеграла
- •3.2. Замена переменных в тройном интеграле
- •3.3. Приложения тройного интеграла
- •Лекция № 55. Тема 4 : Криволинейные интегралы
- •4.1. Криволинейные интегралы первого рода или по длине дуги
- •4.2. Криволинейные интегралы второго рода или по координатам
- •Лекция № 56.
- •4.3. Формула Грина
- •4.4. Условие независимости криволинейного интеграла второго рода от пути интегрирования
- •Тема 5 : Поверхностные интегралы
- •5.1. Поверхностные интегралы первого рода
- •5.2. Поверхностные интегралы второго рода
- •5.3. Приложения поверхностных интегралов
- •Лекция № 57. Тема 6 : Элементы теории поля
- •6.1. Понятие поля
- •6.2. Формула Гаусса Остроградского
- •6.3. Формула Стокса
- •Теория вероятностей Лекция № 58. Тема 1 : Общие понятия
- •1.1. Предмет теории вероятностей
- •1.2. Пространство элементарных событий
- •1.3. Операции над событиями
- •1.4. Статистический подход к понятию вероятности
- •Лекция № 59
- •1.5. Элементы комбинаторики
- •1. Перестановки.
- •2. Сочетания.
- •3. Размещения.
- •1.6. Классическое определение вероятности
- •1.7. Аксиоматическое определение вероятности
- •Лекция № 60. Тема 2 : Основные теоремы теории вероятностей
- •2.1. Теорема умножения вероятностей
- •2.2. Теорема сложения вероятностей
- •2.3. Формула полной вероятности
- •2.4. Формула Бейеса
- •Лекция № 61. Тема 3 : Повторение испытаний
- •3.1. Независимые испытания. Формула Бернулли
- •3.2. Локальная теорема Муавра – Лапласа
- •3.3. Интегральная теорема Лапласа
- •3.4. Теорема Пуассона
- •3.5. Вероятность отклонения частоты от постоянной вероятности в независимых испытаниях
- •Лекция № 62. Тема 4 : Случайные величины и функции распределения
- •4.1. Случайные величины
- •4.2. Функция распределения вероятностей для дискретной св
- •4.3. Непрерывная св. Функция распределения
- •Лекция № 63. Тема 5 : Числовые характеристики св
- •5.1. Математическое ожидание св
- •5.2. Дисперсия и среднее квадратическое отклонение св
- •5.3. Понятие о моментах св
- •Лекция № 64. Тема 6 : Основные законы распределения случайных величин
- •6.1. Дискретные законы распределения
- •6.1.1. Биномиальное распределение
- •6.1.2. Распределение Пуассона
- •6.1.3. Геометрическое распределение
- •6.2. Непрерывные законы распределения
- •6.2.1. Равномерное распределение
- •6.2.2. Показательное распределение
- •Лекция № 65
- •6.2.3. Нормальное распределение
- •Тема 7 : Закон больших чисел
- •Лекция № 66. Тема 8 : Многомерные случайные величины
- •8.1. Многомерные св и их функции распределения
- •8.2. Числовые характеристики двумерной случайной величины
- •Элементы математической статистики Лекция № 67. Введение
- •1. Предмет математической статистики
- •Тема 1: Статистические законы распределения выборки
- •1.1. Полигон и гистограмма
- •1.2. Эмпирическая функция распределения
- •Тема 2 : Статистические оценки параметров распределения
- •2.1. Точечные оценки
- •2.2. Интервальные оценки
- •Лекция № 68
- •Тема 3 : Проверка статистических гипотез. Критерий согласия Пирсона
- •Тема 4 : Элементы теории корреляции
- •4.1. Статистические зависимости
- •4.2. Линейная регрессия
- •4.3. Корреляционная таблица
- •4.4. Выборочный коэффициент корреляции
- •Теория функций комплексной переменной Лекция № 69. Определение функции комплексной переменной
- •1.1. Комплексные числа и действия над ними
- •1.2. Тригонометрическая и показательная формы записи
- •1.3. Определение функции комплексной переменной
- •Лекция № 70
- •1.3. Предел и непрерывность функции комплексной переменной
- •Тема 2 : Ряды с комплексными членами
- •2.1. Числовые ряды
- •2.2. Степенные ряды
- •2.3. Основные элементарные функции комплексной переменной
- •Лекция № 71. Тема 3 : Производная функции комплексной переменной
- •3.1. Определение производной
- •3.2. Гармонические функции
- •Тема 4 : Интеграл от функции комплексной переменной
- •4.1. Определение интеграла
- •4.2. Основная теорема Коши
- •Лекция № 72
- •4.3. Интегральная формула Коши
- •4.4. Производные высших порядков от аналитической функции
- •4.5. Ряд Тейлора
- •. . . . .
- •4.6. Ряд Лорана
- •Лекция № 73
- •Тема 5 : Вычеты
- •5.1. Изолированные особые точки аналитической функции
- •5.2. Определение вычета
- •5.3. Основная теорема о вычетах
- •5.4. Приложение вычетов к вычислению интегралов
- •Операционное исчисление Лекция № 74. Тема 1 : Оригинал и изображение
- •1.1. Определение оригинала и изображения
- •1.2. Изображения некоторых функций
- •Тема 2 : Основные теоремы операционного исчисления
- •2.1. Теоремы подобия, запаздывания и смещения
- •Лекция № 75.
- •3.2. Приложение операционного исчисления к задачам техники
- •С о д е р ж а н и е
3.2. Локальная теорема Муавра – Лапласа
При больших значениях n формулу (1) использовать затруднительно. Поэтому возникает вопрос о замене её некоторой асимптотической формулой, т.е. приближенной, справедливой при больших п.
Теорема 1.
Если вероятность появления события А
в каждом из независимых испытаний
постоянна и равна р,
то вероятность
при большихп
приближенно равна значению функции
,
где
при
.
(2)
Значения функции
берутся из таблиц, при этом
- четная функция, т.е.
.
Пример 2. Вероятность рождения мальчика равна 0,51. Найти вероят-ность того, что среди 100 новорожденных окажется половина мальчиков.
Вероятность такого
события вычисляем по формуле (2) при
и
.
Имеем


где значение
взято из таблицы значений функции
.
3.3. Интегральная теорема Лапласа
Пусть производится
п
независимых испытаний. Как найти
вероятность
того, что событиеА
появится в п
испытаниях не менее
раз и не более
раз? Формулой
пользоваться не удобно. Ответ даёт
Теорема 2.
Если вероятность появления события А
в каждом из п
независимых испытаний постоянна и
равна р,
то вероятность
при большихп
приближенно равна
,
где
(3)
Для приближенного вычисления данного интеграла
(функция Лапласа)
имеются таблицы,
при этом
функция нечетная,
т.е.
.
Тогда
.
Замечание 2.
Погрешность вычислений вероятностей
по формулам (2) и (3) имеет порядок
.
Пример 3. Вероятность того, что деталь прошла проверку ОТК, равна 0,2. Найти вероятность того, что среди 400 отобранных наудачу деталей окажется непроверенных от 70 до 100.
Вычислим


Тогда
![]()
3.4. Теорема Пуассона
Из замечания 2 следует, что точность вычисления вероятностей тем хуже, чем меньше р или q. Возникает задача отыскания асимптотической формулы, специально приспособленной для этого случая. Такая формула была получена Пуассоном.
Теорема 3. Если число испытаний велико, а вероятность появления события А в каждом испытании мала, то имеет место приближенная формула
или
,
(4)
где
среднее число появлений события А
в п
испытаниях.
Замечание 3. Можно проверить, что при больших п справедливо равенство

Пример 4. Вероятность того, что деталь окажется бракованной, равна 0,01. Найти вероятность того, что среди 400 изготовленных деталей ока-жется пять бракованных.
Так как число
испытаний
велико, а вероятность
мала, то воспользуемся формулой (4).
Найдём
и тогда

Замечание 4.
Для удобного использования формулы
Пуассона также существуют таблицы для
.
Имеются таблицы и для вычисления
вероятностей вида
(5)
причем поскольку
в формуле Пуассона число испытаний
достаточно велико, то п
можно не писать, т.е.
и![]()
Пример 5. Вероятность того, что деталь будет забракована, равна 0,01. Найти вероятность того, что среди 400 изготовленных деталей будет не больше пяти забракованных.
Очевидно, что
поэтому можем воспользо-ваться формулой
(5). Из таблицы, учитывая, что
и
,
нахо-дим
Следовательно, искомая вероятность
равна
![]()
