
- •Особенности строения растительной клетки. Классификация структурных элементов растительной клетки.
- •Хлоропласт – органелла фотосинтеза, строение, размножение, развитие основных структурных элементов на свету и в темноте.
- •Основные закономерности дыхания растений. Теория Палладина. Роль дыхания в жизнедеятельности и его особенности у растений.
- •Клеточная оболочка, строение, физиологические функции.
- •Гликолиз, его роль, основные превращения и их место.
- •Минеральные элементы: классификации, критерии необходимости для роста и развития, коэффициент накопления.
- •Фотосинтез – уникальная функция зеленого растения. Сущность и значение фотосинтеза. Общее выражение процесса фотосинтеза.
- •Рибосомы, ядро, аппарат Гольджи, лизосомы, строение, характеристика и функции.
- •Функциональное взаимодействие разных органоидов клетки.
- •Азот и его роль в процессе жизнедеятельности растений.
- •Этилен, биосинтез, структура и роль в процессе роста растений.
- •Транспирация, строение листа как органа транспирации, типы транспирации.
- •Покой растений, его адаптивные функции. Виды покоя, прерывание покоя.
- •Характеристика процессов раздражимости и возбудимости у растений.
- •Глиоксилатный цикл, характеристика, особенности у растений.
- •Облегченная диффузия минеральных элементов, отличие от простой диффузии.
- •Мембранный принцип организации протоплазмы и органоидов. Общая характеристика, свойства мембран.
- •Хлорофиллы, химическая структура, спектральные свойства, функции.
- •Фосфор, его роль в процессе жизнедеятельности растений.
- •Быстрые движения у растений, механизм.
- •Основные этапы биосинтеза молекул хлорофилла
- •Роль серы в жизнедеятельности растений.
- •Поступление воды в клетку, основные механизмы, показатели.
- •Фикобилипротеины, химическое строение, спектральные свойства, роль в фотосинтезе.
- •Пассивный транспорт ионов, общая характеристика, движущая сила.
- •Транспирация как саморегулирующий процесс.
- •Характеристика листа как органа фотосинтеза. Особенности строения листа как фотосинтетического аппарата разных растений.
- •Окислительное фосфорилирования, характеристика, типы.
- •Роль кальция и магния в жизнедеятельности растений.
- •Каротиноиды, химическое строение, свойства, функции.
- •Митохондрия как органелла синтеза атф.
- •Роль микроэлементов в жизнедеятельности растений.
- •Первичные процессы фотосинтеза. Законы поглощения света. Поглощение света пигментами, электрон-возбужденное состояние пигментов.
- •Гидратированное состояние ионов. Ионные каналы, строение, функции.
- •Физико – химические свойства протоплазмы.
- •Типы дезактивации возбужденного состояния пигментов: фотохимическая работа, флуоресценция и фосфоресценция. Квантовый выход.
- •Влияние внешних и внутренних факторов на транспирацию. Физиологическая засуха.
- •Характеристики новых классов фитогромонов: брассиностероиды, жасмоновая и салициловая кислоты и др.
- •Фотосинтетическая единица. Реакционные центры. Пигмент-антенный комплекс (пак), превращение энергии в пак.
- •Взаимопревращение мембран растительной клетки и их функции.
- •Адаптации растений к засолению и недостатку кислорода.
- •Структура и основные компоненты этц фотосинтеза высших растений.
- •Основные принципы действия регуляторных механизмов в клетках растений.
- •Биологическое значение воды, ее физико-химические свойства.
- •Миграции энергии в системе фотосинтезирующих пигментов. Возможные механизмы.
- •АтФазные системы, ответственные за транспорт минеральных элементов. Принцип функционирования н-атФазной помпы.
- •Общие закономерности роста и развития растений. Кривая роста.
- •Симпластический транспорт минеральных веществ в растениях. Основные закономерности.
- •Регуляция роста светом. Фотопериодизм. Роль фитохрома.
- •Фотофосфорилирование. Характеристика основных типов фотофосфорилирования: циклическое, нециклическое.
- •Микротельца, липосомы, микротрубочки; их строение и функции.
- •Виды транспирации, их характеристика. Устьичная и внеустьичная регуляция транспирации.
- •Темновая стадия фотосинтеза. Природа первичного акцептора углекислого газа. Цикл Кальвина.
- •Значение воды в жизнедеятельности растений. Структура и физические особенности воды.
- •Ауксины, биосинтез и их роль в процессах регуляции роста растений.
- •Цикл Кребса.
- •Функции корневых тканей в радиальном транспорте ионов.
- •Гиббереллины, биосинтез и их роль в процессах регуляции роста растений.
- •Цикл Хетча-Слека, характеристика, особенности.
- •Пространственная организация функционирования систем транспорта в клетках корневой системы растений.
- •Абсцизовая кислота, биосинтез и ее роль в процессах регуляции роста растений.
- •Метаболизм по типу толстянковых: характеристика, особенности.
- •Ритмы растений, их классификация, механизмы.
- •Зависимость процесса дыхания растений от внешних факторов.
- •Гликолатный путь в фотосинтезе, его связь с процессом фотодыхания
- •Цитокинины, структура, биосинтез, роль в процессе роста растений.
- •Транспорт воды по растению: общие закономерности, пути, верхний и нижний концевые двигатели.
- •Саморегуляция фотосинтеза.
- •Основные этапы онтогенеза растений, их характеристика.
- •Дальнейший транспорт минеральных веществ у высших растений.
- •Наблюдаемый и действительный фотосинтез. Основные показатели фотосинтеза. Фотосинтез и урожай.
- •Показатели процесса транспирации, их определение и характеристика.
- •Взаимодействие фитогормонов при росте.
- •Основные пути образования и характеристика основных продуктов темновой стадии фотосинтеза.
- •Флоэмный транспорт в растениях. Механизмы флоэмного транспорта.
- •Устойчивость растений к низким температурам, холодостойкость, морозоустойчивость.
- •Современная теория дыхания. Ферментативные системы дыхания. Связь между дыханием и фотосинтезом.
- •Интеграция и регуляция транспорта минеральных веществ в целом растении, системы регуляции, основные принципы.
- •Влияние температуры на рост и развитие растений. Яровизация. Стратификация.
- •Пентозофосфатный путь окисления глюкозы.
- •Водный дефицит и устойчивость к засухе. Тепловой стресс.
- •Ростовые движения растений: тропизмы и настии.
- •Предмет и задачи физиологии растений, методы изучения, связь физиологии растений с другими науками.
- •Роль метаболизма углерода в процессах адаптации растений
- •Газоустойчивость растений.
- •Общая характеристика пассивного транспорта минеральных веществ в клетку. Электрохимический потенциал.
- •Общие представления о стрессе. «Триада» Селье. Стресс-факторы. Кросс-адаптация.
- •Устойчивость растений к низким положительным температурам.
- •Адаптация растений к повышенным температурам.
- •Зимостойкость растений.
- •Адаптация растений к засолению.
- •Адаптация растений к недостатку кислорода.
- •Генерализованный адаптационный синдром. «Триада» Селье. Характеристика первичной индуктивной реакции.
- •«Триада» Селье. Характеристика фазы адаптации и фазы истощения.
- •Стресс. Адаптация. Устойчивость. Характеристика, классификация.
- •Стрессовые белки, синтезируемые в условиях водного дефицита.
- •Белки теплового шока. Индукция синтеза, классификация.
- •Lea белки. Классификация, выполняемые функции.
- •Синтетические регуляторы роста и развития растений: ретарданты, морфактины, гербициды, дефолианты, десиканты, сениканты, химические аналоги природных стимуляторов и ингибиторов роста.
- •Негормональные регуляторы роста: витамины, фенольные протекторы и синергисты, природные ингибиторы.
- •1. Особенности строения растительной клетки. Классификация структурных элементов растительной клетки.
-
Минеральные элементы: классификации, критерии необходимости для роста и развития, коэффициент накопления.
Концентрация минеральных веществ в самих растениях в большинстве случаев мало связана с их концентрацией в среде. Например, соотношение K+/Na+ в растениях обычно составляет 5–20, тогда как в среде, как правило, больше Na+. С другой стороны, элементы, содержащиеся в окружающей среде в низких концентрациях, могут накапливаться в растениях в значительном количестве. Эта способность растений характеризуется так называемым коэффициентом накопления: N= концентрация элемента в клетке (растении) / концентрация элемента в окружающей среде. Качественный состав внутриклеточного содержания растений все же зависит от содержания минеральных веществ в почве, а также от условий окружающей среды. Все элементы, которые присутствуют в почве, могут быть выявлены в растениях.
Питательные элементы, которые используются растениями из субстрата в больших количествах (содержание их в золе 10–1–10–2 %), называют макроэлементами, а необходимые в значительно меньшем количестве (содержание 10–3 % и ниже) – микроэлементами. К макроэлементам относятся K, Ca, Mg, N, P, S (Н2О и СО2), для галофитов следует добавить Na и Cl. Микроэлементы: Mn, Zn, Cu, Cl, B, Mo, сюда же относится и Fe, который располагается на границе макро- и микроэлементов. Водорослям необходим один или несколько из следующих элементов: Со, Si, I, V. Некоторым высшим растениям необходимы селен, кремний. Кроме необходимых элементов для роста, в оптимальных пределах должны быть и другие факторы: рН, температура, обеспечение О2, градиент водного потенциала, а для зеленых растений – освещенность соответствующей интенсивности и протяженности. Минеральные элементы играют определенную роль в обмене веществ в растении.
-
Фотосинтез – уникальная функция зеленого растения. Сущность и значение фотосинтеза. Общее выражение процесса фотосинтеза.
Подобно всем другим организмам зеленые растения используют в качестве источника энергии углеводы и другие органические вещества. Однако в отличие от большинства организмов зеленые растения – автотрофы. Растения создают свою пищу сами, преобразуя химическим путем атмосферную двуокись углерода (СО2) в сахара и близкие им соединения за счет лучистой энергии солнца, поглощаемый фотосинтетическим аппаратом хлоропластов. Когда лучи соответствующей длины волны поглощаются хлоропластом, двуокись углерода химически восстанавливается до сахаров, а газоподобный кислород выделяется в объеме, равным восстановленному СО2. Эти изменения противоположны по направлению изменениям, которые происходят в процессе дыхания. Таким образом, важная роль растений в балансе природы связана и с тем, что они возвращают кислород в атмосферу, который необходим для других организмов. Обозначивши формулой (СН2О) элементарную единицу молекулы углевода (молекула глюкозы С6Н12О6 построена из шести таких единиц), мы можем записать общее выражение фотосинтеза: СО2 + Н2О -> (энергия, свет) (СН2О)n + О2.
-
Активный транспорт минеральных элементов через плазматическую мембрану. Определение, виды активного транспорта. Определение, виды активного транспорта. Общая схема функционирования ионообменных помп.
При активном транспорте энергия, которая получается в процессе метаболизма, участвует в переносе веществ через мембрану в направлении возрастания энергии. Таким образом, активный перенос ионов – это перемещение против градиента электрохимического потенциала с затратой энергии. Сама по себе разница в электрохимическом потенциале по обеим сторонам мембраны не обязательно предполагает участие активного транспорта. Когда растворенное вещество не проникает через мембрану, оно не может находиться в состоянии равновесия по обе стороны мембраны и электрохимический градиент может быть не одинаков с обеих ее сторон. В настоящее время рассматривают следующие типы активного транспорта веществ.
1. Первичный активный транспорт – трансмембранный векторный перенос иона происходит непосредственно в ходе энергетического превращения в АТФазных системах или ЭТЦ (используется или энергия АТФ или ОВ реакций): а) электрогенный активный транспорт – первичный активный трансмембранный перенос ионов во время АТФазной или ОВ реакций, которые сопровождаются генерацией электрического потенциала;
б) электронейтральный активный транспорт – первичный активный трансмембранный перенос ионов во время АТФазной или ОВ реакций, который не сопровождается генерацией электрического потенциала (например, Н+/K+ обмен при стехиометрии 1:1).
2. Вторичный активный транспорт – происходит, когда в качестве энергетического источника используются градиенты других ионов. Например, электрохимический градиент ионов Н+ для сопряженного транспорта анионов, сахаров, аминокислот и т. д. (симпорт или котранспорт), или, напротив, для вывода ионов Na+ из клетки (антипорт). Каждая из названных систем может функционировать при определенных условиях в качестве переносящего ион механизма.
АТФазные помпы. Активная секреция протонов из клеток корневой системы – это фундаментальный процесс, важный для всех трансмембранных потоков в растениях. Ацидофицирующая активность (подкисление среды) растений известна давно: исследования, касающиеся способности растений сдвигать рН питательного раствора в кислую сторону относятся к 20–40 годам прошлого века, когда в практику начали внедряться стеклянные рН-электроды и методы ионометрии.