
- •Особенности строения растительной клетки. Классификация структурных элементов растительной клетки.
- •Хлоропласт – органелла фотосинтеза, строение, размножение, развитие основных структурных элементов на свету и в темноте.
- •Основные закономерности дыхания растений. Теория Палладина. Роль дыхания в жизнедеятельности и его особенности у растений.
- •Клеточная оболочка, строение, физиологические функции.
- •Гликолиз, его роль, основные превращения и их место.
- •Минеральные элементы: классификации, критерии необходимости для роста и развития, коэффициент накопления.
- •Фотосинтез – уникальная функция зеленого растения. Сущность и значение фотосинтеза. Общее выражение процесса фотосинтеза.
- •Рибосомы, ядро, аппарат Гольджи, лизосомы, строение, характеристика и функции.
- •Функциональное взаимодействие разных органоидов клетки.
- •Азот и его роль в процессе жизнедеятельности растений.
- •Этилен, биосинтез, структура и роль в процессе роста растений.
- •Транспирация, строение листа как органа транспирации, типы транспирации.
- •Покой растений, его адаптивные функции. Виды покоя, прерывание покоя.
- •Характеристика процессов раздражимости и возбудимости у растений.
- •Глиоксилатный цикл, характеристика, особенности у растений.
- •Облегченная диффузия минеральных элементов, отличие от простой диффузии.
- •Мембранный принцип организации протоплазмы и органоидов. Общая характеристика, свойства мембран.
- •Хлорофиллы, химическая структура, спектральные свойства, функции.
- •Фосфор, его роль в процессе жизнедеятельности растений.
- •Быстрые движения у растений, механизм.
- •Основные этапы биосинтеза молекул хлорофилла
- •Роль серы в жизнедеятельности растений.
- •Поступление воды в клетку, основные механизмы, показатели.
- •Фикобилипротеины, химическое строение, спектральные свойства, роль в фотосинтезе.
- •Пассивный транспорт ионов, общая характеристика, движущая сила.
- •Транспирация как саморегулирующий процесс.
- •Характеристика листа как органа фотосинтеза. Особенности строения листа как фотосинтетического аппарата разных растений.
- •Окислительное фосфорилирования, характеристика, типы.
- •Роль кальция и магния в жизнедеятельности растений.
- •Каротиноиды, химическое строение, свойства, функции.
- •Митохондрия как органелла синтеза атф.
- •Роль микроэлементов в жизнедеятельности растений.
- •Первичные процессы фотосинтеза. Законы поглощения света. Поглощение света пигментами, электрон-возбужденное состояние пигментов.
- •Гидратированное состояние ионов. Ионные каналы, строение, функции.
- •Физико – химические свойства протоплазмы.
- •Типы дезактивации возбужденного состояния пигментов: фотохимическая работа, флуоресценция и фосфоресценция. Квантовый выход.
- •Влияние внешних и внутренних факторов на транспирацию. Физиологическая засуха.
- •Характеристики новых классов фитогромонов: брассиностероиды, жасмоновая и салициловая кислоты и др.
- •Фотосинтетическая единица. Реакционные центры. Пигмент-антенный комплекс (пак), превращение энергии в пак.
- •Взаимопревращение мембран растительной клетки и их функции.
- •Адаптации растений к засолению и недостатку кислорода.
- •Структура и основные компоненты этц фотосинтеза высших растений.
- •Основные принципы действия регуляторных механизмов в клетках растений.
- •Биологическое значение воды, ее физико-химические свойства.
- •Миграции энергии в системе фотосинтезирующих пигментов. Возможные механизмы.
- •АтФазные системы, ответственные за транспорт минеральных элементов. Принцип функционирования н-атФазной помпы.
- •Общие закономерности роста и развития растений. Кривая роста.
- •Симпластический транспорт минеральных веществ в растениях. Основные закономерности.
- •Регуляция роста светом. Фотопериодизм. Роль фитохрома.
- •Фотофосфорилирование. Характеристика основных типов фотофосфорилирования: циклическое, нециклическое.
- •Микротельца, липосомы, микротрубочки; их строение и функции.
- •Виды транспирации, их характеристика. Устьичная и внеустьичная регуляция транспирации.
- •Темновая стадия фотосинтеза. Природа первичного акцептора углекислого газа. Цикл Кальвина.
- •Значение воды в жизнедеятельности растений. Структура и физические особенности воды.
- •Ауксины, биосинтез и их роль в процессах регуляции роста растений.
- •Цикл Кребса.
- •Функции корневых тканей в радиальном транспорте ионов.
- •Гиббереллины, биосинтез и их роль в процессах регуляции роста растений.
- •Цикл Хетча-Слека, характеристика, особенности.
- •Пространственная организация функционирования систем транспорта в клетках корневой системы растений.
- •Абсцизовая кислота, биосинтез и ее роль в процессах регуляции роста растений.
- •Метаболизм по типу толстянковых: характеристика, особенности.
- •Ритмы растений, их классификация, механизмы.
- •Зависимость процесса дыхания растений от внешних факторов.
- •Гликолатный путь в фотосинтезе, его связь с процессом фотодыхания
- •Цитокинины, структура, биосинтез, роль в процессе роста растений.
- •Транспорт воды по растению: общие закономерности, пути, верхний и нижний концевые двигатели.
- •Саморегуляция фотосинтеза.
- •Основные этапы онтогенеза растений, их характеристика.
- •Дальнейший транспорт минеральных веществ у высших растений.
- •Наблюдаемый и действительный фотосинтез. Основные показатели фотосинтеза. Фотосинтез и урожай.
- •Показатели процесса транспирации, их определение и характеристика.
- •Взаимодействие фитогормонов при росте.
- •Основные пути образования и характеристика основных продуктов темновой стадии фотосинтеза.
- •Флоэмный транспорт в растениях. Механизмы флоэмного транспорта.
- •Устойчивость растений к низким температурам, холодостойкость, морозоустойчивость.
- •Современная теория дыхания. Ферментативные системы дыхания. Связь между дыханием и фотосинтезом.
- •Интеграция и регуляция транспорта минеральных веществ в целом растении, системы регуляции, основные принципы.
- •Влияние температуры на рост и развитие растений. Яровизация. Стратификация.
- •Пентозофосфатный путь окисления глюкозы.
- •Водный дефицит и устойчивость к засухе. Тепловой стресс.
- •Ростовые движения растений: тропизмы и настии.
- •Предмет и задачи физиологии растений, методы изучения, связь физиологии растений с другими науками.
- •Роль метаболизма углерода в процессах адаптации растений
- •Газоустойчивость растений.
- •Общая характеристика пассивного транспорта минеральных веществ в клетку. Электрохимический потенциал.
- •Общие представления о стрессе. «Триада» Селье. Стресс-факторы. Кросс-адаптация.
- •Устойчивость растений к низким положительным температурам.
- •Адаптация растений к повышенным температурам.
- •Зимостойкость растений.
- •Адаптация растений к засолению.
- •Адаптация растений к недостатку кислорода.
- •Генерализованный адаптационный синдром. «Триада» Селье. Характеристика первичной индуктивной реакции.
- •«Триада» Селье. Характеристика фазы адаптации и фазы истощения.
- •Стресс. Адаптация. Устойчивость. Характеристика, классификация.
- •Стрессовые белки, синтезируемые в условиях водного дефицита.
- •Белки теплового шока. Индукция синтеза, классификация.
- •Lea белки. Классификация, выполняемые функции.
- •Синтетические регуляторы роста и развития растений: ретарданты, морфактины, гербициды, дефолианты, десиканты, сениканты, химические аналоги природных стимуляторов и ингибиторов роста.
- •Негормональные регуляторы роста: витамины, фенольные протекторы и синергисты, природные ингибиторы.
- •1. Особенности строения растительной клетки. Классификация структурных элементов растительной клетки.
-
Биологическое значение воды, ее физико-химические свойства.
Вода является основным компонентом большинства растительных клеток и тканей. Содержание воды в клетках варьирует в зависимости от типа клеток и физиологических условий. Например, в корне моркови содержится около 85 % воды, тогда как молодые листья салата на 95 % состоят из воды. В некоторых сухих семенах и спорах содержание воды составляет всего лишь 10 %; однако, для того чтобы они стали метаболически активными, содержание воды в них должно существенно увеличиться. Вода является средой, в которой происходит диффузия растворенных соединений по клеткам растения; представляет собой вещество, необычайно удобное для регуляции температуры; служит растворителем необходимым для протекания многих биохимических реакций; наконец, вода довольно мало сжимаема при давлениях, существующих в организме, что подчеркивает ее роль в поддержании структуры растения. Минеральные вещества, необходимые для роста, и органические соединения, синтезируемые в ходе фотосинтеза – все они транспортируются по растению в виде водных растворов. У активно растущих растений существует непрерывный водный поток из почвы через тело растения к листьям, где вода испаряется в основном через устьица. Физические свойства воды. Без воды жизнь на нашей планете не могла бы существовать. Вода не только необходимый компонент живых клеток, но для многих еще и среда обитания. Важное свойство воды – ее полная прозрачность для лучей видимой части спектра, что позволяет солнечным лучам достигать хлоропластов, находящихся в клетках листьев, а также растений погруженных в толщу воды. Свойства воды необычны и связаны главным образом с малыми размерами молекул, с полярностью и со способностью последних соединяться друг с другом водородными связями. Под полярностью подразумевают неравномерное распределение зарядов в молекуле. У воды один конец молекулы несет небольшой положительный заряд, а другой – отрицательный. Такую молекулу называют диполем. Вода обладает большой теплоемкостью. Удельной теплоемкостью воды называют количество теплоты, которое необходимо, чтобы поднять температуру 1 кг воды на 1о С. Большая теплоемкость воды сводит к минимуму происходящие в ней температурные изменения. Испарение воды требует довольно значительных количеств энергии. Это опять таки объясняется наличием водородных связей. Именно в силу этого температура кипения воды – вещества со столь малыми молекулами – необычайно высока. Плотность воды от +4 до 0 оС понижается, поэтому лед легче воды и в воде не тонет. Вода – единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твердом. Еще одной важной физической характеристикой воды является не-обычайно высокая диэлектрическая проницаемость (D), что является следствием молекулярной структуры. Высокая диэлектрическая прони-цаемость воды делает электрические силы между растворенными в ней заряженными веществами относительно слабыми.
-
Миграции энергии в системе фотосинтезирующих пигментов. Возможные механизмы.
Пигменты в хлоропластах образуют у высших растений две систе-мы. Каждая пигментная система составляет фотосинтетическую едини-цу, которая входит в фотосистемы I и II. Каждая из этих единиц состоит из набора молекул вспомогательных пигментов, передающих энергию на одну молекулу основного пигмента (Р700 и Р680). Последние молекулы входят в состав реакционных центров. В реакционных центрах энергия используется для осуществления химической реакции, которая является центральным звеном фотосинтеза. Пигменты, входящие в состав систем, делят на пигменты-ловушки и пигменты-сборщики. Пигмент-ловушка может преобразовывать энергию. Пигмент-сборщик квантов света передает поглощенную энергию пигменту-ловушке. В пигментных системах ловушками являются Р700 и Р680. Остальные пигменты – сборщики. В результате фотосинтез может происходить и при освещении светом, поглощенным не хлорофиллом а, а, например, каротиноидами. Итак, первой стадией фотосинтеза является поглощение света, затем идет перенос энергии возбуждения и дальше фотохимические стадии в виде химических реакций. Перенос или миграция энергии возбуждения происходит в направлении от вспомогательных пигментов к хлорофиллу а, а затем к специальному хлорофиллу (Р700 и Р680), где происходят фотохимические реакции. Следовательно, общим результатом стадии является сбор энергии возбуждения, вызванной светом, и передача ее на реакционный центр. Наиболее общепризнанным механизмом передачи электронного возбуждения между молекулами пигментов является так называемый резонансный перенос. Для того чтобы произошел этот перенос энергии, возбужденная молекула должна индуцировать возбужденное состояние в другой молекуле, находящейся в непосредственной близости от нее.
Перенос электронного возбуждения происходит тогда, когда индуцируется колебание электрона в другой молекуле. Когда перенос возбуждения завершен, колебания электрона в первой молекуле прекращаются и возникают колебания электрона в другой молекуле, которая в свою очередь переходит в возбужденное состояние. Таким образом, резонансный перенос возбужденного состояния от одной молекулы к другой подобен механизму первичного поглощения света в том отношении, что колебания некоторого электрона в молекуле индуцируется локально изменяющимся электрическим полем. Надо же отметить, что для резонансного переноса электронного возбуждения необходимо, чтобы энергия, которую может передать возбужденная молекула, соответствовала энергии, которую может принять другая молекула.