Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bilety_fiziologia.docx
Скачиваний:
236
Добавлен:
23.02.2016
Размер:
437.1 Кб
Скачать

1)Физиология нервных синапсов

а) класс-я и принцип строения синапсов в нервной системе.

Синапсы - контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).

Классификация синапсов.

- По местоположению: нервно-мышечные синапсы и нейронейрональные (аксосоматические, аксоаксональные, аксодендритические, дендросоматические).

- По характеру действия на воспринимающую структуру: возбуждающие и тормозящие.

- По способу передачи сигнала: электрические, химические, смешанные.

- По природе медиатора: АХ-, дофамин-, серотонин-, НА-ергические.

б) механизм проведения возбуждения в электрических и химических синапсах.

Электрические синапсы. эл. способ передачи возбуждения осуществляющийся благодаря тесным контактам передающей и воспринимающей структур. Локальные токи деполяризуют мембрану нейрона до критического уровня, после чего возникает спонтанный процесс деполяризации. Электрические синапсы обладают односторонним проведением возбуждения. Электрический синапс сравнительно мало утомляем.

Химические синапсы - пресинаптическая часть, синаптическая щель и постсинаптическая часть. ПД - активация Са2+-каналов - вход Са2+ в клетки - экзоцитоз медиатора в синаптическую щель - диффузия медиатора к постсинаптической мембране - связь медиатора с хеморецептором: 1) если активация Nа-каналов постсинапт. мембраны - местная деполяризация (ВПСП) - суммация ВПСП - возбуждение кл. - активация аденилатциклазы - активация цАМФ, ИТФ - эффект. 2) если активация Cl-каналов постсинапт. мембраны - гиперполяризация мембраны (ТПСП) - торможение клетки.

в) хар-ка хеморецепторов пре- и постсинаптических мембран.

- холинорецепторы (никотиновые, мускариновые)

- адренорецепторы (а1,а2,в1,в2)

г) хар-ка возбуждающих (ВПСП) и тормозящих (ТПСП) постсинаптических потенциалов.

ВПСП вызваны возрастанием проводимости мембраны для Na+. Они деполяризуют постсинаптическую мембрану, повышают возбудимость клетки, а при достижении критического уровня деполяризации приводят к возникновению ПД. Так, активация н-холинорецепторов и глутаматных рецепторов приводит к возникновению ВПСП.

ТПСП вызваны повышением проводимости мембраны для K+ и Cl–. Они гиперполяризуют постсинаптическую мембрану, понижают возбудимость клетки и препятствуют генерации ПД. Этот процесс получил название постсинаптического торможения. Так, активация глициновых рецепторов и рецепторов ГАМК типа А приводит к возникновению тормозных ПСП. Эти рецепторы пропускают внутрь клетки ионы Cl–.

2)Методы исследования сердца

а)метод электрокардиографии, принципы анализа ЭКГ:

методика исследования электрической активности сердца, получила название электро­кардиографии, а регистрируемая с ее помощью кривая называется электрокардиограммой (ЭКГ). Электрокардиография широко при­меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.

Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три стандартных отведения от конечностей: I отведение: правая рука — левая рука; II отведение: правая рука — левая нога; III отведение: левая рука — левая нога. Кроме того, регистрируют три униполярных усиленных отведения: aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между объединенными и активными электродами. Так, при aVR активным является электрод, наложенный на правую руку, при aVL — на левую руку, при aVF — на левую ногу.так же была предложена регистрация шести грудных отведений.

Анализ ЭКГ:

1.определение ритмичности сердечной деятельности.

2.определение продолжительности интервала R-R.(в норме 0,1)

3.определение ЧСС = 60сек/ R-R в сек

4.измерение продолжительности и амплитуды элемертов ЭКГ

б)метод аускультации сердца и фонокардография, происхождение тонов сердца, их характеристики:

Во время аускультации больной должен задержать дыхание на выдохе. При аускультации сердца необходимо знать точки выслушивания сердца:

Первая точка: место выслушивания митрального клапана-область верхушечного толчка( в пятом межреберье на 1-2см кнутри от среднеключичной линии)

Вторая точка: место выслушивания клапанов аорты-второе межреберье непосредственно у правого края грудины

третья точка: место выслушивания клапанов легочной артерии-второе межреберье непосредственно у левого края грудины

Четвёртая точка: место выслушивания трикуспидального клапана-прикрепление основания мечевидного отростка к грудине. ближе к её правому краю

Пятая точка (точка Боткина-Эрба): место выслушивания клапанов аорты-прикрепление 3-4 ребёр к левому краю грудины(третье межреберье у левого края грудины).

У здоровых людей выслушиваются только первый и второй тоны.первый тон возникает во время систолы желудочков, продолжительный, низкочастотный, лучше слышен в 1 и 5 точках. Второй тон возникает во время диастолы желудочков, короткий, высокочастотный, лучше выслушивается в 2 и3 точках.

Микрофон фонокардиографа ставят в точки выслушивания. используемые при аускультации сердца. Микрофон воспринимает звуковые колебания и преобразует их в электрические сигналы, которые усиливаются и передаются на систему частотных фильтров. позволяющих выделить звуковые колебания определённой частоты.

при анализе ФКГ определяют частоту, длительность и амплитуду тонов сердца, а также длительность ситолической и диастолической пауз сердца.

Генез тонов сердца: Первый тон-образуется в результате суммирования всех звукрвых явлений, возникающих в сердце в начале систолы. Второй тон-возникает в результате закрытия клапанов аорты и легочной артерии. Третий тон-обусловлен колебаниями стенки желудочка в период его быстрого кровенаполнения. Четвёртый тон-обусловлен сокращением миокарда предсердий, в частности, левого ушка.

в)метод поликардиографии, его клиническое значение:

метод поликардиографии, основанный на синхронной регистрации ЭКГ, фонокардиограммы (ФКГ) и сфигмограммы. Необходим для фазового анализа цикла сердечной деятельности у человека.

г)принципы эхокардиографии, магнитно-резонансной томографии и радионуклеидных методов исследования:

Эхокардиография — метод исследования механической де­ятельности и структуры сердца, основанный на регистрации отра­женных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором. Изо­бражение эхосигналов от структур сердца воспроизводится на экране осциллографа и регистрируется на фотопленке. ЭхоКГ всегда регистрируется синхронно с ЭКГ, что позволяет производить оценку механической активности сердца в определенные фазы сердечного цикла.

Билет 34

  1. Физиология вестибулярной чувствительности

а) морфофункц. хар-ка периферического, проводникового и коркового отдела вестибулярного анализатора.

Периферический отдел: вестибулярный аппарат (в лабиринте пирамиды височной кости): преддверие, 3 полукружных канала, два мешочка (сферический и эллиптический, или маточка), в которых находится отолитовый аппарат: скопления рецепторных клеток на возвышениях, или пятнах,оканчивающихся одним более длинным подвижным волоском и 60—80 склеенными неподвижными волосками, которые пронизывают желеобразную мембрану, содержащую кристаллики карбоната кальция — отолиты. В перепончатых полукружных каналах, заполненных, как и весь лабиринт, эндолимфой, рецепторные волосковые клетки сконцентрированы в ампулах в виде крист. Они также снабжены волосками.

Волокна вестибулярного нерва направляются в продолговатый мозг (ядра: преддверное верхнее, или Бехтерева, преддверное латеральное, или Дейтерса, Швальбе и др). Отсюда сигналы направляются во многие отделы ЦНС: с.м., мозжечок, глазодвигательные ядра, кору большого мозга, ретикулярную формацию и ганглии автономной нервной системы.В коре полушарий большого мозга основные афферентные проекции вестибулярного аппарата локализованы в задней части постцентральной извилины.

б) механизм возбуждения вестибулорецепторов.

При движении эндолимфы (во время угловых ускорений), когда волоски сгибаются в одну сторону, волосковые клетки возбуждаются, а при противоположно направленном движении — тормозятся. Отклонение в одну сторону приводит к открыванию каналов и деполяризации волосковой клетки, а отклонение в противоположном направлении вызывает закрытие каналов и гиперполяризацию рецептора. В волосковых клетках преддверия и ампулы при их сгибании генерируется рецепторный потенциал, который усиливает выделение АХ и через синапсы активирует окончания волокон вестибулярного нерва.

в) хар-ка вестибулоспинальных, вестибуловегетативных и вестибулоглазодвигательных рефлексов.

Вестибулоспинальные влияния через вестибуло-, ретикуло- и руброспинальные тракты изменяют импульсацию нейронов сегментарных уровней с.м. Так осуществляется динамическое перераспределение тонуса скелетной мускулатуры и включаются рефлекторные реакции, необходимые для сохранения равновесия.

В вестибуловегетативные реакции вовлекаются сердечно-сосудистая система, пищеварительный тракт и др. внутренние органы. При сильных и длительных нагрузках на вестибулярный аппарат возникает патологический симптомокомплекс, названный болезнью движения, например морская болезнь. Она проявляется изменением сердечного ритма (учащение, а затем замедление), сужением, а затем расширением сосудов, усилением сокращений желудка, головокружением, тошнотой и рвотой.

Вестибулоглазодвигательные рефлексы (глазной нистагм) состоят в медленном движении глаз в противоположную вращению сторону, сменяющемся скачком глаз обратно. Само возникновение и хар-ка вращательного глазного нистагма — важные показатели состояния вестибулярной системы, они широко используются в морской, авиационной и космической медицине, а также в эксперименте и клинике.

г) методы исследования вестибулярной СС.

1)вращательная проба. (измерение продолжительности нистагма после 10 оборотов испытуемого в кресле)

2)определение порога ощущения противовращения. (определение угловой скорости, в тот момент вращения когда испытуемому покажется что кресло остановили и когда появится ощущение противовращения)

3)указательная проба в модификации Барани. (определение расстояния от указательного пальца до верхнего конца карандаша (в-на ошибки) после 10 оборотов испытуемого на кресле)

4)отолитовая проба.(определение степень изменения ЧСС и срока этого отклонения после вращения испытуемого на кресле.)

  1. Физиология терморегуляции

а) функциональная сис-ма поддержания постоянства температуры организма человека.

Температура тела человека поддерживается на относительно постоянном уровне, несмотря на колебания температуры окружающей среды - изотермия. Изотермия свойственна теплокровным (гомойотермным) животным. Температура органов и тканей, как и всего организма в целом, зависит от интенсивности образования тепла и величины теплопотерь.Теплообразование происходит вследствие экзотермических реакций. Потеря тепла органами и тканями зависит от их месторасположения: поверхностно расположенные органы, например кожа, скелетные мышцы, отдают больше тепла и охлаждаются сильнее, чем внутренние органы, более защищенные от охлаждения. Постоянство температуры тела у человека может сохраняться при условии равенства теплообразования и теплопотери всего организма. Это достигается с помощью физиологических механизмов терморегуляции. Терморегуляция проявляется в форме взаимосочетания процессов теплообразования и теплоотдачи, регулируемых нейроэндокринными механизмами

б) хар-ка физической и химической терморегуляции

Химическая терморегуляция осуществляется путем изменения уровня теплообразования, т. е. усиления или ослабления интенсивности обмена веществ в клетках организма.(термогенез): базальный и регуляторный: сократительный (мышечная дрожь, мыш.тонус, произв. сокращения), несократительный (активация окисления, разобщение окисления и фосфорилирования.

Физическая терморегуляция осуществляется путем изменения интенсивности отдачи тепла.Теплоотдача: влажная (испарение): ощутимая, неощутимая; сухая: теплоизлучение, теплопроведение, конвекция (естественная, форсириванная).

в) виды теплоотдачи, физиологические основы потоотделения

- теплоизлучение - радиационная теплоотдача (66 %),

- конвекция - движения и перемещения нагреваемого теплом воздуха (15 %),

- теплопроведение - отдачи тепла веществам, непосредственно соприкасающимся с поверхностью тела (имеет небольшое значение, так как воздух и одежда являются плохими проводниками тепла),

- испарение воды с поверхности кожи (потоотделение) и легких. (19 %).

Испарение воды зависит от относительной влажности воздуха. В насыщенном водяными парами воздухе вода испаряться не может. Поэтому при высокой влажности атм. воздуха высокая температура переносится тяжелее. В насыщенном водяными парами воздухе пот выделяется в большом количества, но не испаряется и стекает с кожи. Такое потоотделение не способствует отдаче тепла: только та часть пота, которая испаряется с поверхности кожи, имеет значение для теплоотдачи (эта часть пота составляет эффективное потоотделение).

г) гипер- и гипотермия, клиническое применение гипотермии.

переохлаждение тела — гипотермия, перегревание — гипертермия.

Гипотермия — состояние, при котором температура тела ниже 35 °С. Быстрее всего гипотермия возникает при погружении в холодную воду. Вначале наблюдается возбуждение симп. части АНС и рефлекторно ограничивается теплоотдача и усиливается теплопродукция. Через некоторое время температура тела все же начинает снижаться, исчезновение чувствительности, понижается интенсивность обмена веществ, замедляется дыхание, урежаются сердечные сокращения.

Искусственно создаваемая гипотермия с охлаждением тела до 24—28°С применяется на практике в хирургических клиниках, осуществляющих операции на сердце и ЦНС. Гипотермия значительно снижает обмен веществ г.м., а следовательно, потребность в кислороде. Гипотермию прекращают путем быстрого согревания тела.

Гипертермия — состояние, при котором температура тела поднимается выше 37 °С, возникает при продолжительном действии высокой температуры окружающей среды, особенно при влажном воздухе, под влиянием некоторых эндогенных факторов, усиливающих в организме теплообразование (тироксин, ж.к. и др.). Резкая гипертермия, при которой температура тела достигает 40—41 °С, сопровождается тяжелым общим состоянием организма и носит название теплового удара.

Билет 35