
11 ALGEBRA
.pdf
EXERCISES 1.1
A.Antiderivative and Indefinite Integral
1.Evaluate the integrals.
a. |
dw |
b. dz |
|
c. |
d cos x |
d. d(x3 +3x2 |
1) |
2.Given f(x) = d(x2 1) and f(1) = 2, find f(5).
3.x f (x) dx = x2 +5x+1 is given. Find f(x).
4.x3 f (x) dx = x5 4x3 x+1 is given. Find f(2).
5.f (x) = 5x2 – 4x + 1 and f(1) = 3 are given. Find f(3).
6.Evaluate the integrals.
a.(cos x+4x3 2e2x ) dx
b.(5x3 3x2 +5) dx
c. |
|
5dx |
d. |
8 |
|
1+ x |
2 |
7x dx |
|||
|
|
|
|
|
|
e. |
cos4x dx |
f. |
7sin x dx |
7.Evaluate the integrals, using the basic formulas for integration.
a. |
x5 |
dx |
b. |
4 dx |
|
|
|
c. |
x 3 |
dx |
d. 15 dx |
|
|
|
|
|
|
|
|
x |
|
|
|
e. 3x7 dx |
f. |
( 13 + |
16 |
|
19 ) dx |
||
|
|
|
|
x |
x |
|
x |
8.Evaluate the integrals, using the basic formulas for integration.
a. |
sin4x dx |
b. |
cos5x dx |
|
|||||||||
c. |
|
|
4 |
|
dx |
d. |
|
|
5 |
|
dx |
||
cos |
2 |
x |
sin |
2 |
2x |
||||||||
|
|
|
|
|
|
|
|
|
|||||
e. |
4sec2 4x dx |
f. |
tan2 x dx |
|
|||||||||
g. |
(cot2 x+2) dx |
h. |
|
|
3 |
|
dx |
||||||
|
|
|
|
|
|
|
|
|
1 x2 |
|
|
||
i. |
|
|
24 |
|
dx |
j. |
|
x2 +5 |
|
|
|||
|
|
x |
+1 |
|
|
x2 +1 dx |
|
||||||
k. |
5cos(8x 4) dx |
l. |
|
|
1 |
|
dx |
||||||
1 4x2 |
|
||||||||||||
|
|
|
5 |
|
|
|
sin |
2 |
|
|
|
||
m. 9x2 +1 dx |
n. |
|
x dx |
|
|||||||||
o. |
cot2 x dx |
p. |
(tan2 x 1) dx |
B.Integration Methods
9.Evaluate the integrals using the substitution method.
a.sin(4x+1) dx
b.(1+ x2 + x3 )8 (2x+3x2 ) dx
c. |
(1 x2 )7 |
x dx |
d. |
x cos(x2 |
5) dx |
|||||
e. |
|
|
1 |
2 dx |
f. |
|
cos x |
|
dx |
|
1 |
16x |
1+sin |
2 |
x |
||||||
|
|
|
|
|
|
|
g.x 1+ x2 dx
h.(x4 + x2 ) (2x3 + x) dx
Integrals |
39 |

10.Evaluate the integrals using the substitution method.
a. |
x cos x2 |
dx |
b. |
x sin(5x2 +7) dx |
||||
c. |
|
(1 |
1 |
4 |
dx |
d. |
5sin x |
dx |
|
|
3x) |
|
|
|
cos x |
|
|
e. |
|
x |
|
dx |
|
|
|
|
5x 1 |
|
|
|
|
||||
|
|
|
|
|
|
|
11.Evaluate the integrals using the method of integration by parts.
a. ex x dx |
b. x2 ex dx |
||
c. |
x3 |
ex dx |
d. x sin x dx |
|
2 |
|
f. arccos x dx |
e. |
xx |
dx |
|
|
e |
|
|
g. |
ln(x+5) dx |
h. log x dx |
|
i. |
arccot x dx |
j. cos(ln x) dx |
|
k. |
sin2 x e2x dx |
|
12. Evaluate the integrals by using partial fractions.
a. |
9 |
4 dx |
g. |
|
1 |
dx |
||
(3x+1) |
2 |
+4x+4 |
||||||
|
|
|
|
|
x |
|
||
h. |
|
1 |
dx |
t. |
|
xdx |
|
|
(x+1)3 |
3+ x4 |
|
||||||
|
|
|
|
13. Evaluate the integral of each radical function.
a. |
|
5x 1 dx |
b. |
1 x dx |
|
|||
c. |
x 1+ x2 dx |
d. 3 x+1 dx |
|
|||||
e. |
|
|
x |
dx |
f. |
|
5x |
dx |
|
1 x2 |
5x2 +3 |
||||||
|
|
|
|
|
||||
g. |
|
5 |
1+ x dx |
h. |
x2 |
|
||
|
3 1+ x3 dx |
|||||||
i. |
|
|
x 2 +3 dx |
|
|
|
|
|
|
|
|
x 2 |
|
|
|
|
|
14. Evaluate the integral of each radical function.
a. |
|
1 4x2 |
dx |
b. |
|
dx |
|
|
||
|
|
|
|
|
|
|
|
1 x2 |
|
|
c. |
|
x |
|
dx |
d. |
|
16x2 |
9 |
dx |
|
16x |
2 |
|
x |
|
||||||
|
|
|
+1 |
|
|
|
|
e. 16 9x2 dx
15.Evaluate the integral of each trigonometric function.
a. |
sin2 |
x cos x dx |
b. |
sin x cos x dx |
||
c. |
cos3 |
x sin5 |
x dx |
d. |
cos2 |
x sin x dx |
e. |
sin3 |
x cos5 |
x dx |
f. |
sin4 |
x cos3 x dx |
g. |
cos4 |
x sin3 x dx |
h. |
cos4x cos3x dx |
||
i. |
sin5 |
x cos7 |
x dx |
j. |
sin3x cos4x dx |
|
k. |
sin7x sin5x dx |
l. |
sin3x cos8x dx |
|||
m. |
cos2x sin4x dx |
n. cos5x sin x dx |
||||
o. |
cos x cos4x dx |
p. sin6 |
x cos6 x dx |
16.Evaluate the integral of each function by using the substitution t = tan 2x .
1+sin x
1 sin x dx
40 |
Algebra 11 |

A. EVALUATING DEFINITE INTEGRALS
|
|
1. Definition of the Definite Integral |
|
|
|
Definition |
|
|
definite integral |
||
|
|
Let f(x) be a continuous function defined on an interval [a, b]. Then the area between the |
|
|
graph of f(x) and the x-axis is called the definite integral of f(x) betwen a and b. |
|
|
|
For example, in the figure opposite, the shaded area A
shows the definite integral of f(x) on the interval [a, b].
b
We can write this expression as A = f (x) dx .
a
y |
|
|
|
y = f(x) |
|
|
A |
|
a |
b |
x |
|
THE DEFINITE INTEGRAL
Note
If the graph is below the x-axis then its integral will
be negative. However, area is a positive quantity so
b
we reverse the sign: A = – f(x) dx.
a
We say that the definite integral can be negative but
the area is always positive.
Note
If part of the graph is below the x-axis and part of the graph is above the x-axis then the integral will be the algebraic sum of the areas.
In the figure, all of the areas A, B, C are positive
b
numbers, so f (x) dx = A – B+C.
a
Integrals
y |
|
|
|
|
a |
|
b |
|
x |
|
|
|
|
|
|
|
A |
|
|
y |
|
|
|
|
A |
|
C |
|
x |
|
|
|
b |
|
|
B |
|
|
|
|
|
|
|
|
|
|
|
|
41 |

Note
For linear functions we can use geometric methods (by finding the area of a triangle) to calculate the area under a curve.
EXAMPLE 57 Find the area of the region between the graph of y = 3x and the x-axis on the interval [0, 4].
|
|
|
|
|
|
Solution The shaded area is |
|
|
y |
||
|
|
|
|||
4 |
1 |
|
|
|
12 |
A = 3x dx = |
4 12 = 24 |
square units, by the |
|
||
2 |
|
||||
0 |
|
|
|
|
formula for the area of a triangle.
|
A |
|
0 |
4 |
x |
|
EXAMPLE 58 In the figure, the areas of the shaded parts A, B and C are given as A = 7 cm2, B = 9 cm2 and C = 8 cm2. Find the total area of the shaded region in the figure and evaluate the integral on the interval [a, b].
Solution Total area = A + B + C = 7 + 9 + 8 = 24 cm2
b
The integral on [a, b] = f (x) dx = A – B + C
a
= 7 – 9 + 8 = 6.
y |
|
|
|
|
|
A |
|
C |
|
|
|
|
|
|
a |
|
B |
b |
x |
|
|
|||
|
|
|
|
42 |
Algebra 11 |

2. The Fundamental Theorem of Calculus
Theorem Fundamental Theorem of Calculus
Let f(x) be a function such that f : [a, b] R. If F (x) = f(x) and f(x) dx = F(x) + c, then
b b
f (x) dx =(F(x)+ c)|= F(b) F(a) |
|
a |
a |
|
b
Here we use the notation | to show the boundaries of the integral.
a
Note
The Fundamental Theorem of Calculus shows us that we do not need a constant of integration c when we evaluate a definite integral. For example, suppose we write F(a) + c instead of F(a), and F(b) + c instead of F(b). Then by the Fundamental Theorem of Calculus,
b
f (x) dx =(F(b)+ c) (F(a)+ c) = F(b) – F(a) + c – c = F(b) – F(a).
a
|
|
FUNDAMENTAL THEOREM OF CALCULUS |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
b |
|
|
|
|
|
|
|
|
|
|
|
|
|
f (x) dx = F(b) F(a) |
||
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
1 |
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE |
x dx =? |
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
Solution |
1 |
|
2 |
1 |
2 |
|
|
2 |
|
1. |
|
|
|
x dx = x |
|
|= |
1 |
– |
0 |
= |
|
|
|||||
|
|
0 |
2 |
0 |
2 |
|
2 |
|
2 |
|
|
||
|
60 |
5 |
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE |
x2 |
dx =? |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
3 |
5 |
|
3 |
|
3 |
= 125 27 |
|
98 . |
|
Solution |
x2 |
dx = x |
|= 5 |
|
– |
3 |
= |
||||||
|
|
3 |
|
3 |
3 |
3 |
|
3 |
|
3 |
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE |
sin x dx =? |
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|||||
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Solution |
sin x dx = cos x| = –cos – (–cos 0) = 1 + 1 = 2. |
||||||||||||
|
|
0 |
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Integrals |
43 |

Proof
Proof
Proof
Proof
Proof
Check Yourself 10
Evaluate the definite integrals.
5 |
|
|
e |
|
|
a. x3 |
dx |
b. cos x dx |
c. 1 |
dx |
|
1 |
|
0 |
1 |
x |
|
Answers |
|
|
|
|
|
a. 156 |
b. 0 |
c. 1 |
|
|
|
3. Properties of the Definite Integral
Let f: [a, b] R and g: [a, b] R be two integrable functions. Then the following properties hold:
|
a |
|
|
|
|
|
1. |
f(x) dx =0 |
|
|
|
|
|
|
a |
|
|
|
|
|
a f (x) dx F(a) – F(a) 0 |
|
|
|
|||
a |
|
|
|
|
|
|
|
b |
a |
|
|
|
|
2. f(x) dx = – f(x) dx |
|
|
|
|||
|
a |
b |
|
|
|
|
b |
|
|
|
a |
|
|
f (x) dx F(b) – F(a) –(F(a) – F(b)) – f( x) dx |
|
|||||
a |
|
|
|
b |
|
|
|
|
b |
|
b |
|
|
3. |
For any c R, |
|
c f(x) dx = c |
f(x) dx. |
|
|
|
|
a |
|
a |
|
|
|
b |
|
|
|
b |
b |
c f (x) dx = c F(b) F(a) = c F(b) c F(a)= c F(x)|= c f (x) dx |
||||||
|
a |
|
|
|
a |
a |
|
|
|
|
|
||
|
b |
|
b |
b |
|
|
4. [ f(x) g(x)] dx = f(x) dx g(x) dx |
|
|
||||
|
a |
|
a |
a |
|
|
b |
b |
|
|
|
|
|
f (x) dx g(x) dx =[F(b) – F(a)] [G(b) – G(a)] |
[F(b) G(b)] – [ F( a) G( a)] |
|||||
a |
a |
|
|
|
|
|
|
|
|
= [ F G](b) – [ F G](a) |
|
|
|
|
|
|
b |
|
|
|
|
|
|
= [ f (x) g(x)] dx |
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
c |
b |
c |
5. |
For any a, b, c R with a b c, then f(x) dx = |
f(x) dx + f(x). |
||||
|
|
|
|
a |
a |
b |
c |
|
|
|
|
|
|
f (x) dx = F(c) – F(a)= F(c) – F(a)+ F(b) – F(b) = [F(b) – F(a)]+[F( c) – F( b)] |
||||||
a |
|
|
|
|
|
|
|
b |
|
c |
|
|
|
|
= f (x) dx+ f (x) dx |
|
|
|
||
|
a |
|
b |
|
|
|
44 |
Algebra 11 |

|
|
|
|
|
|
b |
b |
|
|
|
6. |
If f(x) g(x) for every x [a, b], then |
|
f(x) dx g(x) dx. |
|
|
|||
|
|
|
|
|
|
a |
a |
|
|
Proof |
If f(x) g(x) then f(x) – g(x) 0. |
|
|
|
|
|
|||
|
Let us write h(x) = f(x) – g(x), so h(x) 0 for every x on [a, b]. |
|
|
||||||
|
|
|
b |
|
|
|
|
|
|
|
We know that h(x) dx is the area between the graph of h(x) and the x-axis. |
|
|||||||
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
b |
|
|
|
|
|
|
If h(x) 0 then h(x) dx 0. |
|
|
|
|
|
|||
|
|
|
|
a |
|
|
|
|
|
|
|
b |
|
b |
|
|
|
|
|
|
7. |
f (x) dx |
|
f (x) dx |
|
|
|
|
|
|
|
a |
|
a |
|
|
|
|
|
|
|
|
b |
|
|
|
|
|
|
Proof |
We know that f (x) dx is the area between the graph of f(x) and the x-axis on the interval |
||||||||
|
|
|
a |
|
|
|
|
|
|
|
[a, b]. So we have two possible cases: |
|
|
|
|
|
|||
|
Case 1: f(x) 0, for every x [a, b] or f(x) 0, for every x [a, b]. |
|
|
||||||
|
|
y |
|
|
|
|
y |
|
|
|
|
|
|
|
|
|
|
y = f(x) |
|
|
|
|
a |
b |
x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
|
|
A |
|
|
|
|
|
|
|
y = f(x) |
a |
b |
x |
|
|
|
|
|
|
|
b |
b |
|
|
|
b |
||||
In the first figure, A = – f(x) dx or |
f( x) dx= – A and | – A|=| A|= |
|
f( x) |
|
dx. |
||||
|
|
||||||||
a |
a |
|
|
|
a |
||||
b |
b |
|
|
|
|
|
|
|
|
In the second figure, A = f (x) dx = |
|
f (x) |
|
dx. This concludes half of the proof. |
|||||
|
|
||||||||
a |
a |
|
|
|
|
|
|
|
|
Case 2: Let c [a, b]. If f(x) 0 for x [a, c] and |
y |
|
|
|||
|
|
b |
|
|
y = f(x) |
|
f(x) 0 for x [c, b] then f (x) dx = A2 – A1 |
|
|
||||
|
|
|
||||
|
|
a |
|
A2 |
|
|
|
|
|
a |
|
||
|
b |
|
|
x |
||
and so |
f (x) dx = A2 – A1 . |
c |
b |
|||
|
||||||
|
a |
|
A1 |
|
|
|
|
|
|
|
|
||
|
b |
|
|
|
|
|
However, f (x) |
dx =| A2 |+| A1 | and |
|
|
|
||
|
a |
|
|
|
|
|
A2 – A1 |
A2 + A1 |
by the triangle inequality. |
|
|
|
|
b |
b |
|
|
|
|
|
So f (x) dx f (x) dx. |
|
|
|
|||
a |
a |
|
|
|
|
Integrals |
45 |

Note
1.All continuous functions have integrals on a closed interval [a, b].
2.A function with a countable number of points of discontinuity has an integral on the
closed interval [a, b]. For example, if the points c1, c2, …, cn [a, b] are the points of
b |
c1 |
c2 |
b |
discontinuity of f(x) then f (x) dx = f (x) dx+ |
f (x) dx+...+ f(x) dx. |
||
a |
a |
c1 |
cn |
|
62 |
3 |
|
|
3 |
|
|
EXAMPLE |
|
x dx =? |
|
|
|
a |
3 |
Solution |
We know f (x) dx = 0, so x dx = 0. |
||
|
|
a |
3 |
|
63 |
4 |
|
|
EXAMPLE |
5x2 sin3 4x dx=? |
|
|
|
|
|
|
||
|
|
4 |
|
|
Solution |
In a similar way to the previous example we can write 4 |
5x2 |
sin3 4x dx = 0. |
|
|
|
4 |
|
|
|
64 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
EXAMPLE |
(2x2 |
+3x 4) dx =? |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
+3x 4) dx = 2 |
3 |
|
3 |
|
|
3 |
3 |
3 |
|
2 |
3 |
3 |
|
Solution (2x2 |
x2 |
dx+3 x dx 4 |
dx = 2 x |
|+3 |
x |
| 4 x| |
|||||||||
1 |
|
|
1 |
|
1 |
|
|
1 |
3 |
1 |
|
2 |
1 |
1 |
|
|
|
|
= 2 |
(9 |
1)+3 |
( 9 |
|
1) 4 |
(3 1)= |
52+12 |
8 = |
64. |
|||
|
|
|
|
|
3 |
2 |
|
2 |
|
3 |
|
|
|
|
3 |
|
65 |
/ 2 |
|
|
|
|
EXAMPLE |
(sin x+cos x) dx =? |
|
|
|
|
|
|
|
|
|
|
||
|
|
0 |
|
|
|
|
|
|
/ 2 |
|/ 2=( –cos |
+sin |
) |
|
Solution |
(sin x+cos x) dx =( cos x+sin x) |
– (– cos 0 + sin 0) |
||||
|
|
0 |
0 |
2 |
2 |
|
= (–0 + 1) – (–1 + 0) = 2.
46 |
Algebra 11 |

|
66 |
1 |
EXAMPLE |
3x+1 dx = ? |
|
|
||
|
|
0 |
Solution 1 We can calculate the integral using substitution: Let u = 3x + 1 so du = 3 dx.
Now we need to calculate the boundaries in terms of u. The lower bound is 3 0 + 1 = 1.
The upper bound is 3 1 + 1 = 4. So we can write
If we calculate a definite integral using the substitution method, we must always remember to calculate the boundaries in terms of the substitution.
1 |
3x+1 dx = |
1 |
4 |
1 u32 4 |
2u32 4 |
2 432 |
|
2 13 |
2 |
16 2 |
= |
14 |
. |
|||
|
3 |
u du = |
3 |
3 |
|= |
9 |
|= |
9 |
9 |
= |
9 |
9 |
||||
0 |
|
1 |
1 |
1 |
|
|
|
|
||||||||
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
Solution 2 Alternatively, in this example we can calculate the integral directly:
1 |
|
2(3x+1) |
3 |
2 |= 2 43 / 2 |
2 13 / 2 |
= 16 2 |
14. |
|
|
3x+1 dx = |
|
||||||||
|
|
|
1 |
|
|
|
|
|
|
0 |
|
9 |
|
0 |
9 |
9 |
9 |
9 |
|
Check Yourself 11 |
|
|
|
|
|
||||
Evaluate the definite integrals. |
|
|
|
|
|||||
2 |
|
|
|
|
4 |
|
|
|
3 |
a. x5 |
cos4x dx |
|
|
b. (x3 |
+4x2 3x 2) dx |
c. |
|||
|
|
(x2 + x 2) dx |
|||||||
2 |
|
|
|
|
1 |
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
d. (2cos x sin2x) dx |
|
e. 2x+3 dx |
|
|
|
||||
/ 2 |
|
|
|
|
1 |
|
|
|
|
Answers |
|
|
|
|
|
|
|
|
|
a. 0 |
b. |
477 |
|
c. |
25 |
d. –1 |
e. 26 |
|
|
|
|
4 |
|
|
6 |
|
3 |
|
4. Leibniz’s Rule
Rule |
|
|
|
|||
Leibniz’s Rule |
|
|||||
|
|
|
|
|
|
x |
|
|
Let f : [a, b] R be a continuous function such that F(x)= f (t) dt. Then |
||||
|
|
|
d |
x |
|
a |
|
|
F (x)= |
|
|||
|
|
|
|
f (t) dt |
= f (x). |
|
|
|
|
||||
|
|
|
dx a |
|
|
Leibniz’s Rule gives us two important corollaries:
Integrals |
47 |

EXAMPLE 67
Solution
EXAMPLE 68
Solution
COROLLARY TO LEIBNIZ'S RULE
Let u(x) and v(x) be two differentiable functions. Then
|
v(x) |
|
|
|
|
|
1. |
F(x)= |
f(t) dt |
|
|
|
|
|
F (x)= f v(x) v (x) |
|
||||
|
a |
|
|
|
|
|
|
v(x) |
|
|
|
|
|
2. |
F(x)= |
f (t) dt |
|
|
|
|
|
|
F (x)= f v(x) v (x) f u(x) u (x). |
u(x)
|
x |
|
|
|
|
|
|
|
|
|
|
|
F(x)= cos t2 |
dt |
is given. Find F ( |
|
). |
|
|||||||
|
|
|
||||||||||
|
1 |
|
|
|
|
|
|
2 |
|
|
||
|
|
|
|
|
|
|
|
|
|
|
v(x) |
|
We know from corollary 1 to Leibniz’s Rule that F(x)= f(t) dt |
F (x) = f(v(x)) v (x). |
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
a |
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
F(x)= cos t2 |
dt and f(t) = cos t2, then F (x) = cos x2 (x) = cos x2. |
|||||||||||
|
1 |
|
|
|
|
|
|
|
|
|
|
|
So F ( |
|
)= cos( |
|
)2 = cos |
|
= |
2 |
. |
|
|
||
2 |
2 |
4 |
2 |
|
|
|||||||
|
|
|
|
|
|
|
|
2 |
|
F(x)= x (t2 4t+1) dt is given. Find F (2). |
|
x |
|
We know from corollary 2 to Leibniz’s Rule that, |
|
v(x) |
|
F(x)= f (t) dt |
F (x)= F(v(x)) v (x) – f(u(x)) u ( x). |
u(x)
x2
So if we have F(x)= (t2 4t+1) dt then
x
F (x) = f(x2) (x2) – f(x) (x) where f(t) = t2 – 4t + 1, F (x) = (x4 – 4x2 +1 ) (2x) – (x2 – 4x + 1 ) 1,
F (2) = (24 – 4 22 + 1) (2 2) – ( 22 – 4 2 + 1) = 7.
48 |
Algebra 11 |