Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

11 ALGEBRA

.pdf
Скачиваний:
27
Добавлен:
21.02.2016
Размер:
7.9 Mб
Скачать

EXERCISES 1.1

A.Antiderivative and Indefinite Integral

1.Evaluate the integrals.

a.

dw

b. dz

 

c.

d cos x

d. d(x3 +3x2

1)

2.Given f(x) = d(x2 1) and f(1) = 2, find f(5).

3.x f (x) dx = x2 +5x+1 is given. Find f(x).

4.x3 f (x) dx = x5 4x3 x+1 is given. Find f(2).

5.f (x) = 5x2 – 4x + 1 and f(1) = 3 are given. Find f(3).

6.Evaluate the integrals.

a.(cos x+4x3 2e2x ) dx

b.(5x3 3x2 +5) dx

c.

 

5dx

d.

8

1+ x

2

7x dx

 

 

 

 

 

e.

cos4x dx

f.

7sin x dx

7.Evaluate the integrals, using the basic formulas for integration.

a.

x5

dx

b.

4 dx

 

 

 

c.

x 3

dx

d. 15 dx

 

 

 

 

 

 

 

x

 

 

 

e. 3x7 dx

f.

( 13 +

16

 

19 ) dx

 

 

 

 

x

x

 

x

8.Evaluate the integrals, using the basic formulas for integration.

a.

sin4x dx

b.

cos5x dx

 

c.

 

 

4

 

dx

d.

 

 

5

 

dx

cos

2

x

sin

2

2x

 

 

 

 

 

 

 

 

 

e.

4sec2 4x dx

f.

tan2 x dx

 

g.

(cot2 x+2) dx

h.

 

 

3

 

dx

 

 

 

 

 

 

 

 

 

1 x2

 

 

i.

 

 

24

 

dx

j.

 

x2 +5

 

 

 

 

x

+1

 

 

x2 +1 dx

 

k.

5cos(8x 4) dx

l.

 

 

1

 

dx

1 4x2

 

 

 

 

5

 

 

 

sin

2

 

 

 

m. 9x2 +1 dx

n.

 

x dx

 

o.

cot2 x dx

p.

(tan2 x 1) dx

B.Integration Methods

9.Evaluate the integrals using the substitution method.

a.sin(4x+1) dx

b.(1+ x2 + x3 )8 (2x+3x2 ) dx

c.

(1 x2 )7

x dx

d.

x cos(x2

5) dx

e.

 

 

1

2 dx

f.

 

cos x

 

dx

1

16x

1+sin

2

x

 

 

 

 

 

 

 

g.x 1+ x2 dx

h.(x4 + x2 ) (2x3 + x) dx

Integrals

39

10.Evaluate the integrals using the substitution method.

a.

x cos x2

dx

b.

x sin(5x2 +7) dx

c.

 

(1

1

4

dx

d.

5sin x

dx

 

 

3x)

 

 

 

cos x

 

e.

 

x

 

dx

 

 

 

5x 1

 

 

 

 

 

 

 

 

 

 

 

11.Evaluate the integrals using the method of integration by parts.

a. ex x dx

b. x2 ex dx

c.

x3

ex dx

d. x sin x dx

 

2

 

f. arccos x dx

e.

xx

dx

 

e

 

 

g.

ln(x+5) dx

h. log x dx

i.

arccot x dx

j. cos(ln x) dx

k.

sin2 x e2x dx

 

12. Evaluate the integrals by using partial fractions.

a.

9

4 dx

g.

 

1

dx

(3x+1)

2

+4x+4

 

 

 

 

 

x

 

h.

 

1

dx

t.

 

xdx

 

(x+1)3

3+ x4

 

 

 

 

 

13. Evaluate the integral of each radical function.

a.

 

5x 1 dx

b.

1 x dx

 

c.

x 1+ x2 dx

d. 3 x+1 dx

 

e.

 

 

x

dx

f.

 

5x

dx

 

1 x2

5x2 +3

 

 

 

 

 

g.

 

5

1+ x dx

h.

x2

 

 

3 1+ x3 dx

i.

 

 

x 2 +3 dx

 

 

 

 

 

 

 

x 2

 

 

 

 

 

14. Evaluate the integral of each radical function.

a.

 

1 4x2

dx

b.

 

dx

 

 

 

 

 

 

 

 

 

 

1 x2

 

 

c.

 

x

 

dx

d.

 

16x2

9

dx

16x

2

 

x

 

 

 

 

+1

 

 

 

 

e. 16 9x2 dx

15.Evaluate the integral of each trigonometric function.

a.

sin2

x cos x dx

b.

sin x cos x dx

c.

cos3

x sin5

x dx

d.

cos2

x sin x dx

e.

sin3

x cos5

x dx

f.

sin4

x cos3 x dx

g.

cos4

x sin3 x dx

h.

cos4x cos3x dx

i.

sin5

x cos7

x dx

j.

sin3x cos4x dx

k.

sin7x sin5x dx

l.

sin3x cos8x dx

m.

cos2x sin4x dx

n. cos5x sin x dx

o.

cos x cos4x dx

p. sin6

x cos6 x dx

16.Evaluate the integral of each function by using the substitution t = tan 2x .

1+sin x

1 sin x dx

40

Algebra 11

A. EVALUATING DEFINITE INTEGRALS

 

 

1. Definition of the Definite Integral

 

 

 

Definition

 

 

definite integral

 

 

Let f(x) be a continuous function defined on an interval [a, b]. Then the area between the

 

 

graph of f(x) and the x-axis is called the definite integral of f(x) betwen a and b.

 

 

 

For example, in the figure opposite, the shaded area A

shows the definite integral of f(x) on the interval [a, b].

b

We can write this expression as A = f (x) dx .

a

y

 

 

 

y = f(x)

 

 

A

 

a

b

x

 

THE DEFINITE INTEGRAL

Note

If the graph is below the x-axis then its integral will

be negative. However, area is a positive quantity so

b

we reverse the sign: A = – f(x) dx.

a

We say that the definite integral can be negative but

the area is always positive.

Note

If part of the graph is below the x-axis and part of the graph is above the x-axis then the integral will be the algebraic sum of the areas.

In the figure, all of the areas A, B, C are positive

b

numbers, so f (x) dx = A B+C.

a

Integrals

y

 

 

 

 

a

 

b

 

x

 

 

 

 

 

 

A

 

 

y

 

 

 

 

A

 

C

 

x

 

 

 

b

 

B

 

 

 

 

 

 

 

 

 

 

41

Note

For linear functions we can use geometric methods (by finding the area of a triangle) to calculate the area under a curve.

EXAMPLE 57 Find the area of the region between the graph of y = 3x and the x-axis on the interval [0, 4].

 

 

 

 

 

 

Solution The shaded area is

 

 

y

 

 

 

4

1

 

 

 

12

A = 3x dx =

4 12 = 24

square units, by the

 

2

 

0

 

 

 

 

formula for the area of a triangle.

 

A

 

0

4

x

 

EXAMPLE 58 In the figure, the areas of the shaded parts A, B and C are given as A = 7 cm2, B = 9 cm2 and C = 8 cm2. Find the total area of the shaded region in the figure and evaluate the integral on the interval [a, b].

Solution Total area = A + B + C = 7 + 9 + 8 = 24 cm2

b

The integral on [a, b] = f (x) dx = A B + C

a

= 7 – 9 + 8 = 6.

y

 

 

 

 

 

A

 

C

 

 

 

 

 

a

 

B

b

x

 

 

 

 

 

 

42

Algebra 11

2. The Fundamental Theorem of Calculus

Theorem Fundamental Theorem of Calculus

Let f(x) be a function such that f : [a, b] R. If F (x) = f(x) and f(x) dx = F(x) + c, then

b b

f (x) dx =(F(x)+ c)|= F(b) F(a)

a

a

 

b

Here we use the notation | to show the boundaries of the integral.

a

Note

The Fundamental Theorem of Calculus shows us that we do not need a constant of integration c when we evaluate a definite integral. For example, suppose we write F(a) + c instead of F(a), and F(b) + c instead of F(b). Then by the Fundamental Theorem of Calculus,

b

f (x) dx =(F(b)+ c) (F(a)+ c) = F(b) – F(a) + c c = F(b) – F(a).

a

 

 

FUNDAMENTAL THEOREM OF CALCULUS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

f (x) dx = F(b) F(a)

 

 

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59

1

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE

x dx =?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

Solution

1

 

2

1

2

 

 

2

 

1.

 

 

x dx = x

 

|=

1

0

=

 

 

 

 

0

2

0

2

 

2

 

2

 

 

 

60

5

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE

x2

dx =?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

3

5

 

3

 

3

= 125 27

 

98 .

Solution

x2

dx = x

|= 5

 

3

=

 

 

3

 

3

3

3

 

3

 

3

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

61

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE

sin x dx =?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution

sin x dx = cos x| = –cos – (–cos 0) = 1 + 1 = 2.

 

 

0

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integrals

43

Proof

Proof

Proof

Proof

Proof

Check Yourself 10

Evaluate the definite integrals.

5

 

 

e

 

 

a. x3

dx

b. cos x dx

c. 1

dx

1

 

0

1

x

 

Answers

 

 

 

 

a. 156

b. 0

c. 1

 

 

 

3. Properties of the Definite Integral

Let f: [a, b] R and g: [a, b] R be two integrable functions. Then the following properties hold:

 

a

 

 

 

 

 

1.

f(x) dx =0

 

 

 

 

 

 

a

 

 

 

 

 

a f (x) dx F(a) – F(a) 0

 

 

 

a

 

 

 

 

 

 

 

b

a

 

 

 

 

2. f(x) dx = – f(x) dx

 

 

 

 

a

b

 

 

 

 

b

 

 

 

a

 

 

f (x) dx F(b) – F(a) –(F(a) – F(b)) – f( x) dx

 

a

 

 

 

b

 

 

 

 

b

 

b

 

 

3.

For any c R,

 

c f(x) dx = c

f(x) dx.

 

 

 

 

a

 

a

 

 

 

b

 

 

 

b

b

c f (x) dx = c F(b) F(a) = c F(b) c F(a)= c F(x)|= c f (x) dx

 

a

 

 

 

a

a

 

 

 

 

 

 

b

 

b

b

 

 

4. [ f(x) g(x)] dx = f(x) dx g(x) dx

 

 

 

a

 

a

a

 

 

b

b

 

 

 

 

 

f (x) dx g(x) dx =[F(b) – F(a)] [G(b) – G(a)]

[F(b) G(b)] – [ F( a) G( a)]

a

a

 

 

 

 

 

 

 

 

= [ F G](b) – [ F G](a)

 

 

 

 

 

b

 

 

 

 

 

 

= [ f (x) g(x)] dx

 

 

 

 

 

a

 

 

 

 

 

 

 

c

b

c

5.

For any a, b, c R with a b c, then f(x) dx =

f(x) dx + f(x).

 

 

 

 

a

a

b

c

 

 

 

 

 

 

f (x) dx = F(c) – F(a)= F(c) – F(a)+ F(b) – F(b) = [F(b) – F(a)]+[F( c) – F( b)]

a

 

 

 

 

 

 

 

b

 

c

 

 

 

 

= f (x) dx+ f (x) dx

 

 

 

 

a

 

b

 

 

 

44

Algebra 11

 

 

 

 

 

 

b

b

 

 

 

6.

If f(x) g(x) for every x [a, b], then

 

f(x) dx g(x) dx.

 

 

 

 

 

 

 

 

a

a

 

 

Proof

If f(x) g(x) then f(x) – g(x) 0.

 

 

 

 

 

 

Let us write h(x) = f(x) – g(x), so h(x) 0 for every x on [a, b].

 

 

 

 

 

b

 

 

 

 

 

 

 

We know that h(x) dx is the area between the graph of h(x) and the x-axis.

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

If h(x) 0 then h(x) dx 0.

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

b

 

b

 

 

 

 

 

 

7.

f (x) dx

 

f (x) dx

 

 

 

 

 

 

 

a

 

a

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

Proof

We know that f (x) dx is the area between the graph of f(x) and the x-axis on the interval

 

 

 

a

 

 

 

 

 

 

 

[a, b]. So we have two possible cases:

 

 

 

 

 

 

Case 1: f(x) 0, for every x [a, b] or f(x) 0, for every x [a, b].

 

 

 

 

y

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

y = f(x)

 

 

 

a

b

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

A

 

 

 

 

 

 

 

y = f(x)

a

b

x

 

 

 

 

 

 

b

b

 

 

 

b

In the first figure, A = – f(x) dx or

f( x) dx= – A and | – A|=| A|=

 

f( x)

 

dx.

 

 

a

a

 

 

 

a

b

b

 

 

 

 

 

 

 

 

In the second figure, A = f (x) dx =

 

f (x)

 

dx. This concludes half of the proof.

 

 

a

a

 

 

 

 

 

 

 

 

Case 2: Let c [a, b]. If f(x) 0 for x [a, c] and

y

 

 

 

 

b

 

 

y = f(x)

f(x) 0 for x [c, b] then f (x) dx = A2 A1

 

 

 

 

 

 

 

a

 

A2

 

 

 

 

a

 

 

b

 

 

x

and so

f (x) dx = A2 A1 .

c

b

 

 

a

 

A1

 

 

 

 

 

 

 

 

b

 

 

 

 

However, f (x)

dx =| A2 |+| A1 | and

 

 

 

 

a

 

 

 

 

A2 A1

A2 + A1

by the triangle inequality.

 

 

 

b

b

 

 

 

 

So f (x) dx f (x) dx.

 

 

 

a

a

 

 

 

 

Integrals

45

Note

1.All continuous functions have integrals on a closed interval [a, b].

2.A function with a countable number of points of discontinuity has an integral on the

closed interval [a, b]. For example, if the points c1, c2, …, cn [a, b] are the points of

b

c1

c2

b

discontinuity of f(x) then f (x) dx = f (x) dx+

f (x) dx+...+ f(x) dx.

a

a

c1

cn

 

62

3

 

 

3

 

EXAMPLE

 

x dx =?

 

 

 

a

3

Solution

We know f (x) dx = 0, so x dx = 0.

 

 

a

3

 

63

4

 

 

EXAMPLE

5x2 sin3 4x dx=?

 

 

 

 

 

 

 

4

 

 

Solution

In a similar way to the previous example we can write 4

5x2

sin3 4x dx = 0.

 

 

4

 

 

 

64 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE

(2x2

+3x 4) dx =?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

+3x 4) dx = 2

3

 

3

 

 

3

3

3

 

2

3

3

Solution (2x2

x2

dx+3 x dx 4

dx = 2 x

|+3

x

| 4 x|

1

 

 

1

 

1

 

 

1

3

1

 

2

1

1

 

 

 

= 2

(9

1)+3

( 9

 

1) 4

(3 1)=

52+12

8 =

64.

 

 

 

 

 

3

2

 

2

 

3

 

 

 

 

3

 

65

/ 2

 

 

 

 

EXAMPLE

(sin x+cos x) dx =?

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

/ 2

|/ 2=( –cos

+sin

)

 

Solution

(sin x+cos x) dx =( cos x+sin x)

– (– cos 0 + sin 0)

 

 

0

0

2

2

 

= (–0 + 1) – (–1 + 0) = 2.

46

Algebra 11

 

66

1

EXAMPLE

3x+1 dx = ?

 

 

 

0

Solution 1 We can calculate the integral using substitution: Let u = 3x + 1 so du = 3 dx.

Now we need to calculate the boundaries in terms of u. The lower bound is 3 0 + 1 = 1.

The upper bound is 3 1 + 1 = 4. So we can write

If we calculate a definite integral using the substitution method, we must always remember to calculate the boundaries in terms of the substitution.

1

3x+1 dx =

1

4

1 u32 4

2u32 4

2 432

 

2 13

2

16 2

=

14

.

 

3

u du =

3

3

|=

9

|=

9

9

=

9

9

0

 

1

1

1

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

Solution 2 Alternatively, in this example we can calculate the integral directly:

1

 

2(3x+1)

3

2 |= 2 43 / 2

2 13 / 2

= 16 2

14.

 

3x+1 dx =

 

 

 

 

1

 

 

 

 

 

0

 

9

 

0

9

9

9

9

 

Check Yourself 11

 

 

 

 

 

Evaluate the definite integrals.

 

 

 

 

2

 

 

 

 

4

 

 

 

3

a. x5

cos4x dx

 

 

b. (x3

+4x2 3x 2) dx

c.

 

 

(x2 + x 2) dx

2

 

 

 

 

1

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

d. (2cos x sin2x) dx

 

e. 2x+3 dx

 

 

 

/ 2

 

 

 

 

1

 

 

 

 

Answers

 

 

 

 

 

 

 

 

a. 0

b.

477

 

c.

25

d. –1

e. 26

 

 

 

4

 

 

6

 

3

 

4. Leibniz’s Rule

Rule

 

 

 

Leibniz’s Rule

 

 

 

 

 

 

 

x

 

 

Let f : [a, b] R be a continuous function such that F(x)= f (t) dt. Then

 

 

 

d

x

 

a

 

 

F (x)=

 

 

 

 

 

f (t) dt

= f (x).

 

 

 

 

 

 

dx a

 

 

Leibniz’s Rule gives us two important corollaries:

Integrals

47

EXAMPLE 67

Solution

EXAMPLE 68

Solution

COROLLARY TO LEIBNIZ'S RULE

Let u(x) and v(x) be two differentiable functions. Then

 

v(x)

 

 

 

 

 

1.

F(x)=

f(t) dt

 

 

 

 

 

F (x)= f v(x) v (x)

 

 

a

 

 

 

 

 

 

v(x)

 

 

 

 

 

2.

F(x)=

f (t) dt

 

 

 

 

 

 

F (x)= f v(x) v (x) f u(x) u (x).

u(x)

 

x

 

 

 

 

 

 

 

 

 

 

F(x)= cos t2

dt

is given. Find F (

 

).

 

 

 

 

 

1

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

v(x)

 

We know from corollary 1 to Leibniz’s Rule that F(x)= f(t) dt

F (x) = f(v(x)) v (x).

 

 

 

 

 

 

 

 

 

 

 

a

 

 

x

 

 

 

 

 

 

 

 

 

 

F(x)= cos t2

dt and f(t) = cos t2, then F (x) = cos x2 (x) = cos x2.

 

1

 

 

 

 

 

 

 

 

 

 

 

So F (

 

)= cos(

 

)2 = cos

 

=

2

.

 

 

2

2

4

2

 

 

 

 

 

 

 

 

 

 

2

 

F(x)= x (t2 4t+1) dt is given. Find F (2).

x

 

We know from corollary 2 to Leibniz’s Rule that,

v(x)

 

F(x)= f (t) dt

F (x)= F(v(x)) v (x) – f(u(x)) u ( x).

u(x)

x2

So if we have F(x)= (t2 4t+1) dt then

x

F (x) = f(x2) (x2) – f(x) (x) where f(t) = t2 – 4t + 1, F (x) = (x4 – 4x2 +1 ) (2x) – (x2 – 4x + 1 ) 1,

F (2) = (24 – 4 22 + 1) (2 2) – ( 22 – 4 2 + 1) = 7.

48

Algebra 11