Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

11 ALGEBRA

.pdf
Скачиваний:
21
Добавлен:
21.02.2016
Размер:
7.9 Mб
Скачать

CHAPTER 1

A. ANTIDERIVATIVE AND INDEFINITE INTEGRAL

1. Definition of the Indefinite Integral

The set of all antiderivatives of a function is called the indefinite integral of the given function.

Definition

indefinite integral

 

Let F(x) be a differentiable function such that F (x) = f(x). Then F(x) is called the primitive

 

or antiderivative of the function f(x), and the expression F(x) + c is called the indefinite

 

integral of f(x).

 

We write the indefinite integral as follows: f (x) dx = F(x)+ c.

 

The different parts of the expression are as follows:

 

THE INDEFINITE INTEGRAL

The differential dx in the expression shows that we mean the indefinite integral with respect to the variable x. We can also find the indefinite integral with respect to other variables, for example:

f (t) dt = F(t)+c.

We read the expression f (x) dx as ‘the integral of f(x) with respect to x’. The process of finding the integral of a function is called integration.

To find the integral of f(x) we ask the question: ‘the derivative of which function is f(x)?’.

In other words, integration is the reverse operation of differentiation. This is why the integral is sometimes called the antiderivative of a function, plus a constant term. Let us look at some examples.

10

Algebra 11

EXAMPLE

EXAMPLE

1

2

2x dx = x2 + c

 

 

(The derivative of x2

is 2x, so

2x d(x)= x2 +c.)

4x3 dx = x4 +c

 

 

(The derivative of x4

is 4x3, so

4x3 dx = x4 + c.)

 

3 sin x dx = – cos x+ c

 

EXAMPLE

 

 

 

 

(The derivative of –cos x is sin x, so sin x dx = – cos x+ c. )

 

In examples 1 to 3 we add a constant c to each primitive. Why do we use it? To understand

 

the reason, let us look at the derivatives of three different functions:

 

y = x2,

y = 2x;

 

y = x2 + 3,

y' = 2x;

 

y = x2 – 6,

y' = 2x.

We can see that the derivatives of the three functions are the same but the primitive functions are different. In other words, the integral of 2x could be x2, or x2 + 3, or x2 – 6, or any other expression of the form x2 + c, where c is a constant number (i.e. not a variable). Similarly, the integral of 3x2 could be x3 + 7, or x3 – 12, or any expression of the form x3 + c. In fact, when we find the indefinite integral of any function we need to add a constant term, c. This constant is called the constant of integration.

 

Note

 

We must always use the constant of integration when finding an indefinite integral.

 

4 If f (x) = 2x and f(3) = 7 then find f(x).

EXAMPLE

 

Solution f(x) = f (x) dx = 2x dx = x2 + c

 

f(3) = 32 + c = 7

 

c = –2

 

So f(x) = x2 – 2.

 

5 dx =?

EXAMPLE

 

Solution We know that dx = 1 dx and y = x, y = 1.

So dx = 1 dx = x+ c.

Integrals

11

dxd

 

6 dy =?

 

 

 

EXAMPLE

 

 

 

 

 

 

 

Solution

This is the same as Example 5 except we need to integrate with respect to y. So dy = y+c.

 

7 d(tan x)= ?

 

 

 

EXAMPLE

 

 

 

 

 

 

 

Solution

Using tan x as variable, d(tan x)= 1 d(tan x)= tan x+ c.

 

 

2. Properties of the Indefinite Integral

 

 

1. The differential of the indefinite integral is equal to the expression after the integral sign:

 

 

 

 

d f (x) dx = f (x) dx.

 

 

2. The derivative of the indefinite integral is equal to the integrand:

 

 

 

d

f (x) dx=

d

f (x) dx= f (x).

 

 

 

dx

 

 

 

 

 

dx

The integral and derivative are inverse operations so they simplify each other.

3. The indefinite integral of the differential of a function is the same function with a constant

term added:

dF(x) F(x)+c.

 

4.Constant multipliers can be taken outside of the integral sign:

a f (x) dx = a f (x) dx.

5.The integral of the sum or difference of two functions is equal to the sum or difference of the integrals of the given functions:

f (x) g(x) dx = f (x) dx g(x) dx.

Proof To prove each property we will use the definition of integration: if F (x) = f(x) then f (x) dx = F(x)+c.

1. Differentiating both sides of the equation f (x) dx = F(x)+c gives: d f (x) dx = d(F(x)+c)= F (x) dx+0 dx = f (x) dx.

So d f(x) dx = f (x) dx.

2. Again, using the definition we get

f (x) dx ( f (x) dx) = (F(x) + c) = F (x) + c = f(x) + 0 = f(x). The proofs of properties 3 and 4 are left as an exercise for you.

5.Let us take the derivative of both sides of the statement to be proved: ( f (x) g(x) dx) =( f (x) dx g(x) dx)

f(x) g(x) = ( f (x) dx) ( g(x) dx) = f(x) g(x).

12

Algebra 11

EXAMPLE 8 f (x)= d(x3 – 2x2 +1) is given. Find f(2) if f(1) = 0.

Solution Let us use the third property of integration: f (x)= d(x3 – 2x2 +1) = x3 – 2x2 + 1 + c

f(1) = 13 – 2 12 + 1 + c = 0 c = 0 and f(x) = x3 – 2x2 + 1 f(2) = 23 – 2 22 + 1 = 8 – 8 + 1 = 1.

 

9 x2 f (x) dx = 3x4 +4x3 x2

is given. Find f(x). (x 0)

EXAMPLE

 

 

Solution

EXAMPLE 10

We can use the second property of integration. Take the derivative of both sides:

dxd x2 f (x) dx = dxd (3x4 +4x3 x2 ) x2 f (x) =12x3 +12x2 – 2x

f (x) =12x+12 – 2x.

f (x) = 12x3 + 6x2 – 4x – 5 and f(2) = 5 are given. Find the value of f(1).

Solution We can use the second, fourth and fifth properties of integration. Integrating both sides gives:f (x) dx = (12x3 +6x2 – 4x – 5) dx

f (x)= 12x3 dx+ 6x2 dx – 4x dx – 5 dx

 

 

= 3 4x3 dx+2 3x2 dx – 2 2x dx – 5 dx

 

= 3 x4 + c

+ 2 x3 + c

– 2 x2 + c – 5x + c

4

1

2

 

 

3

 

= 3x4 + 2x3 – 2x2 – 5x + (c

+ c + c + c ).

 

 

 

1

2

3

4

 

However, the expression c1 + c2 + c3 + c4 is equal to any constant real number, so we can replace it with the single constant c:

f(x) = 3x4 + 2x3 – 2x2 – 5x + c.

Now f(2) = 5 (given), so 5 = 3 24 + 2 23 – 2 22 – 5 2 + c = 48 + 16 – 8 – 10 + c = 46 + c. So c = –41 and f(x) = 3x4 + 2x3 – 2x2 – 5x – 41, which means

f(1) = 3 14 + 2 13 – 2 12 – 5 1 – 41 = –43.

Integrals

13

Check Yourself 1

1.Evaluate each integral by using the definition of integration. a. 6x5 dx b. 3sin x dx

2.Use the properties of the indefinite integral to calculate each integral.

(x3 +4x2 3x 1) dx

3.x3 f (x) dx = x5 4x3 +2x2 +1 is given. Find f(x).

Answers

 

 

 

 

 

 

 

1.

a. x6 + c

 

b. –3cos x + c

 

 

 

 

2.

x4

+ 4x3

 

3x2

x+ c 3.

f (x)= 5x

12

+

4

 

4

3

 

2

 

 

x

 

x2

3. Basic Integration Formulas

We have seen that integration is the opposite of differentiation. Therefore we can take the formulas we found for the derivative and ‘reverse’ them to obtain formulas for the integral of a function. Let us look at each set of formulas in turn, along with some examples of their application.

Note

The formulas in this section come from ‘reversing’ the formulas we found for the derivative. We will not prove them here.

BASIC INTEGRATION FORMULAS - 1

a. xn dx = xn 1

+ c

n –1

n 1

 

 

b. a dx = ax+c for a R

14

Algebra 11

EXAMPLE

11 x3 dx =?

 

 

 

 

 

 

 

 

 

 

 

 

Solution

Using formula 1a: x3

dx = x3 1 + c = x4

+ c.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3+1

 

4

 

 

 

 

 

 

 

EXAMPLE

12 x14

dx =?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

x 4 1

x 3

 

1

 

 

 

 

 

 

Solution

x4

dx = x 4

dx = 4 1+ c = 3 + c = – 3x3 + c

 

 

 

 

 

EXAMPLE

13 3x5

dx =?

 

 

 

 

 

 

 

 

 

 

 

 

Solution

3x5

dx = 3 x5

dx = 3

x6

+ c = x6

+ c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

2

 

 

 

 

 

 

 

 

 

EXAMPLE

14 (3x4 +4x3 – 2x2 + x – 5) dx =?

 

 

 

 

 

 

 

 

 

Solution

(3x4 +4x3 2x2 + x 5) dx = 3 x5

+4 x4

2 x3

+ x2

5x+ c

 

 

 

 

 

 

 

 

 

 

5

 

4

3

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3x5

 

4

2x3

x2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 5 + x

3 +

2 5x+ c

 

 

 

 

 

Check Yourself 2

 

 

 

 

 

 

 

 

 

 

 

 

Evaluate the integrals.

 

 

 

 

 

 

 

 

 

 

 

 

 

a. x3

dx

 

 

 

b. 32 dx

 

 

c. (x2 x3 + x4 ) dx

 

 

 

2

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

d. (x 1)

x dx

 

e. (x+1)2 dx

 

f.

(3x3

4x2

x) dx

 

 

Answers

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x4

 

 

 

 

 

b. x3 c

 

 

 

 

x3

x4

x5

 

 

 

a.

8 + c

 

 

 

 

 

 

c.

3

4 + 5 + c

 

 

 

2x5 / 2

2x3 / 2

 

x3

2

 

 

 

3x4

 

4x3

x2

 

 

d.

 

5

3 + c

 

e. 3 + x

+ x+ c

f.

4 +

 

3

2 + c

Integrals

15

Inverse Trigonometric

Identities:

arcsin x arccos x 2

arctan x arccot x 2

BASIC INTEGRATION FORMULAS - 3

a.sin x dx = cos x+ c

b.sin(ax+ b) dx = – 1a cos(ax+ b)+ c

c.cos x dx = sin x+ c

d.cos(ax+ b) dx = 1a sin(ax+ b)+ c

e.

 

1

 

dx =

sec

2

x dx = (1+tan

2

x) dx= tan x+ c

cos

2

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f.

 

 

 

1

 

 

 

 

2

 

 

 

 

2

cos2(ax+ b)

dx = sec

(ax+ b) dx = (1+tan ( ax+ b))

 

 

1

x dx = csc

2

xdx = (1+cot

2

 

 

 

g.

sin2

 

 

x)dx= cot x+ c

h.

 

2

1

 

dx = csc2(ax+ b) dx = (1+cot 2(ax+ b))

 

 

sin

 

(ax+ b)

 

 

 

 

 

 

 

 

 

dx= 1atan( ax+ b)+ c

dx= 1acot( ax+ b)+ c

i.

 

1

 

dx = arcsin x+ c1

= arccos x+ c2

1 x2

 

 

 

 

j.

 

1

dx = arctan x+ c1

= arccot x+ c2

1+ x2

 

 

 

 

 

 

15

4sin x dx = ?

EXAMPLE

 

Solution

4sin x dx = 4 sin x dx = 4cos x+ c

 

16 sin3x dx =?

 

EXAMPLE

 

 

1 cos3x+ c

Solution sin3x dx =

 

 

3

16

Algebra 11

 

17 cos(7x 3) dx=?

 

 

 

 

EXAMPLE

 

 

 

 

 

 

 

 

 

Solution

cos(7x+3) dx= 1sin(7x+3)+ c

 

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

 

 

18 5sin (2x –1) dx =?

 

 

 

 

EXAMPLE

 

 

 

 

 

 

1

 

5cos (2x – 1)+c

Solution

5sin (2x –1) dx= 5 sin (2x –1) dx= 5

 

(– cos(2 x– 1)) +c= –

 

 

 

 

 

 

 

 

 

 

 

2

 

2

 

19

 

1

 

dx =?

 

 

 

 

 

EXAMPLE

 

 

 

 

 

 

 

 

 

 

 

 

cos2 3x

 

 

 

 

 

 

 

 

 

 

 

 

 

Solution

 

 

1

 

dx =

1

tan3x+ c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

2

3x

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EXAMPLE 20 csc2(5x 3) dx =?

Solution csc2(5x 3) dx=

1

cot(5x 3)+ c

 

5

 

EXAMPLE 21 cos2 x dx =?

Solution cos2 x dx = 1+cos2x dx

 

 

 

 

 

 

 

2

 

 

 

 

 

Reducing degree of

 

 

 

 

 

 

 

 

=

1

 

cos2x

 

cosine and sine:

2 dx+

 

2

dx

cos2 x =

1+ cos2x

 

 

 

 

 

 

 

 

 

 

 

2

 

x

 

1 1

 

 

sin

2

x=

1 cos2x

=

2

+ c1 +

2

.

2

sin2x+ c2

 

2

 

 

 

 

 

 

 

 

 

 

 

 

=x + sin2x + c 2 4

Integrals

17

EXAMPLE

22 cot2 x dx =?

 

 

Solution

cot2

x dx (cot2 x+1 1) dx

 

 

 

 

(cot2

x+1) dx dx

 

 

 

 

cot x+ c1 x+ c2

 

 

 

 

cot x x c

 

EXAMPLE

23 cos2

3x dx sin2 3x dx =?

 

Solution

cos2

3x dx sin2

3x dx = (cos2 3x sin2 3x) dx

 

 

 

 

 

= cos6x dx

Double Angle Formulas:

 

 

 

 

cos 2x = cos2 x – sin2 x

 

 

 

 

 

sin 2x = 2sin x cos x

 

 

 

 

= 1 sin6x+ c

 

 

 

 

 

6

 

18

Algebra 11