
- •Модуль 1
- •Тема 1. Фізичні основи механіки. Кінематика Лекція 1. Основи кінематики поступального та обертального рухів Основні визначення
- •Швидкість і прискорення
- •Кінематика обертального руху
- •Лекція 2. Основи динаміки матеріальної точки та абсолютно твердого тіла Перший закон Ньютона.
- •Сила. Маса. Другий закон Ньютона.
- •Третій закон Ньютона.
- •Сили тертя
- •Сили пружності. Закон Гука.
- •Імпульс. Закон збереження імпульсу
- •Реактивний рух
- •Момент імпульсу. Закон збереження моменту імпульсу
- •Обертальний рух матеріальної точки відносно нерухомої осі
- •Теорема Штейнера (Гюйгенса)
- •Лекція 3. Робота. Енергія. Потужність
- •Робота при обертальному русі.
- •Закони збереження енергії в механіці
- •Потужність
- •Електростатичне поле та його характеристики
- •1. Електричний заряд. Закон збереження електричного заряду замкненої системи
- •2. Закон Кулона
- •3. Електростатичне поле та його напруженість. Лінії напруженості поля
- •4. Робота сил електростатичного поля по переміщенню точкового заряду
- •5. Потенціал електростатичного поля
- •6. Різниця потенціалів. Принцип суперпозиції електростатичних полів
- •7. Еквіпотенциальні поверхні
- •Лекція 05 Теорема Остроградського-Гаусса
- •Теорема Остроградського-Гауса для електростатичного поля у вакуумі
- •1. Поле рівномірно зарядженої нескінченної площини
- •2. Поле рівномірно зарядженої сферичної поверхні
- •3. Поле об'ємно зарядженої кулі
- •4. Поле рівномірно зарядженого нескінченного циліндра (нитки)
- •2. Поляризація діелектриків. Вектор поляризації
- •3. Лінії електричного зміщення і потік електричного зміщення.
- •Потік електричного зміщення для замкненої поверхні
- •4. Теорема Остроградського-Гаусса для електростатичного поля в діелектриці
- •5. Сегнетоелектрики, їх властивості та використання
- •Провідники в електричному полі
- •Електростатична індукція
- •Електрична ємність відокремленого (самотнього) провідника
- •Конденсатори, їх типи та ємність
- •Лекція 08 Постійний електричний струм
- •1. Електричний струм та його характеристики (сила, густина струму).
- •Умови існування електричного струму
- •Сторонні сили. Електрорушійна сила і напруга
- •Закон Ома
- •Опір і провідність провідників
- •Робота та потужність електричного струму
- •Правила Кірхгофа для розгалужених кіл
- •Під час розрахунку складних кіл із застосуванням правил Кірхгофа необхідно:
- •Лекція 09. Магнітне поле постійного струму Загальний опис магнітного поля
- •2. Потік вектора магнітної індукції. Теорема Остроградського-Гаусса для поля в
- •Магнітний потік крізь довільну поверхню s
- •3. Закон Біо-Савара-Лапласа та приклади його застосування (визначення індукції магнітного поля прямолінійного провідника зі струмом і магнітне поле в центрі кругового струму)
- •4. Теорема про циркуляцію векторів магнітної індукції та напруженості магнітного поля
- •Дія магнітного поля на рухомі заряди
- •1. Магнітне поле рухомого заряду
- •2. Дія магнітного поля на рухомий заряд. Сила Лоренца
- •3. Рух зарядженої частинки в магнітному полі
- •4. Формула Ампера
- •Робота по переміщенню контуру із струмом. Робота dА сил Ампера при даному переміщенні контуру (рис. 10.7) дорівнює сумі робіт по переміщенню провідників авс (dА1) і cda (dА2), тобто
- •Магнітне поле в речовині
- •1. Магнітний момент електрона і атома
- •2. Типи магнетиків
- •Намагніченість. Магнітне поле в речовині Намагніченість – це фізична величина, яка визначається магнітним моментом одиниці об'єму магнетика:
- •Феромагнетики та їх властивості Феромагнетики
- •1. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца Досліди Фарадея і наслідки з них.
- •Індуктивність нескінченно довгого соленоїда. Соленоїд – це згорнутий в спіраль ізольований провідник, по якому протікає електричний струм. Повний магнітний потік соленоїда (потокозчеплення)
- •4. Енергія та об'ємна густина енергії магнітного поля
- •1. Коливання та їх типи
- •2. Механічні вільні гармонічні коливання, їх диференціальне рівняння та розв'язок
- •3. Енергія гармонічних коливань
- •Кінетична енергія
- •4. Електричний коливальний контур. Диференціальне рівняння власних електричних коливань та його розв'язок
- •Додавання гармонічних коливань
- •1. Метод векторних діаграм
- •2. Додавання гармонічних коливань одного напрямку
- •3. Биття
- •4. Додавання взаємно перпендикулярних гармонічних коливань. Поняття про фігури Ліссажу
- •Згасаючі коливання
- •1. Згасаючі механічні коливання
- •Енергія гармонічних коливань
- •Вимушені коливання
- •3. Вимушені електромагнітні коливання, диференціальне рівняння і його розв'язок і характеристики
- •4. Електричний резонанс і його використання в техніці
- •Резонанс напруг – це явище різкого зростання амплітуди сили струму в контурі при збігу циклічної частоти зовнішньої змінної напруги з власною частотою 0 коливального контура.
- •Пружні хвилі
- •1. Хвильовий процес. Види хвиль. Хвильова поверхня, фронт хвилі. Промінь
- •2. Гармонічна хвиля та її характеристики
- •3. Принцип Гюйгенса
- •4. Рівняння плоскої та сферичної хвиль
- •4. Хвильове рівняння пружної хвилі
- •Рівняння Максвелла
- •1. Аналіз явища електромагнітної індукції. Вихрове електричне поле. Циркуляція вектора напруженості вихрового електричного поля
- •2. Струм зміщення. Закон повного струму. Друге рівняння Максвелла
- •3. Система рівнянь Максвелла для електромагнітного поля в інтегральній формі. Електромагнітне поле
- •4. Вихрові струми (струми Фуко). Скін-ефект
- •2. Диференціальне рівняння електромагнітної хвилі та його дослідження
- •3. Енергія електромагнітних хвиль (об'ємна густина, потік, вектор Умова-Пойнтінга)
- •4. Тиск електромагнітних хвиль. Імпульс електромагнітного поля
- •5. Шкала електромагнітних хвиль
- •Лекція 19 Інтерференція хвиль
- •3. Стоячі хвилі
- •Лекція 20 Дифракція хвиль
- •1. Закони геометричної оптики. Дифракція світла. Принцип Гюйгенса- Френеля
- •2. Дифракція в паралельних променях на щілині
- •Квантова теорія теплового випромінювання
- •1. Теплове випромінювання, його рівноважність, характеристики
- •По спектральній густині енергетичної світимості можна розрахувати інтегральну енергетичну світимість, підсумувавши по всіх частотах:
- •2. Абсолютно чорне тіло. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закони Кірхгофа і Стефана-Больцмана
- •3. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закон зміщення Віна
- •4. Квантова гіпотеза Планка. Формула Планка
- •Квантова теорія атома водню. Розвиток теорії Бора. Атоми із багатьма електронами
- •1. Спектр випромінювання атома водню. Серіальна формула
- •2. Постулати Бора. Борівська теорія атома водню
- •Набір можливих дискретних частот
- •3. Квантово-механічний опис атома водню
- •4. Квантові числа: головне, орбітальне і магнітне квантові числа. Правила відбору
- •5. Орбітальні механічний та магнітний моменти електрона
- •6. Спін електрона. Спінове квантове число
- •7. Принцип Паулі. Розподіл електронів в атомі за станами. Характерні квантові числа
- •Розподіл електронів в атомі підпорядковується принципу Паулі: в одному і тому ж самому атомі не може бути більше одного електрона з однаковим набором чотирьох квантових чисел n, l, ml I mz , тобто
- •Лекція 24 Хвильові властивості мікрочастинок
- •2. Деякі властивості хвиль де Бройля
- •Фазова швидкість фотона
- •3. Співвідношення невизначеностей Гейзенберга
- •4. Хвильова функція, її статистичний зміст та властивості. Статистичний (ймовірнісний) опис мікрочастинок за допомогою хвильової функції
- •Лекція 25 Рівняння Шредінгера та його застосування
- •1. Головне рівняння нерелятивістської квантової механіки
- •2. Стаціонарне рівняння Шредінгера
- •3. Рух вільної частинки
- •4. Мікрочастинка в одновимірній прямокутній "потенційній ямі" з нескінченно високими "стінками"
- •Власні функції:
- •Нормовані власні функції:
- •5. Проходження частинки через потенціальний бар'єр прямокутної форми. Тунельний ефект
- •Лекція 26 Зонна теорія твердих тіл
- •1. Кристалічні і аморфні тверді тіла. Кристалічна гратка
- •Характерною ознакою кристалічних тіл є кристалічні гратки.
- •3. Квантова теорія електропровідності металів
- •Напівпровідники
- •3. Зонна структура металів, діелектриків та напівпровідників
- •Валентна зона – це зона, повністю заповнена електронами. Утворюється з енергетичних рівнів внутрішніх електронів вільних атомів.
- •2. Функція розподілу Бозе – Ейнштейна
- •3. Функція розподілу Фермі – Дірака Ця функція визначається аналогічно функція розподілу Бозе – Ейнштейна і має такий вид:
- •4. Поняття про виродження систем частинок, що описуються квантовими статистиками
- •5. Поняття про виродження електронного газу в металах
- •Електропровідність металів
- •1. Класична теорія електропровідності металів
- •Виведення закону Ома
- •Закон Джоуля-Ленца
- •Закон Відемана-Франца
- •Труднощі класичної теорії
- •2. Квантова теорія електропровідності металів
- •Напівпровідники
- •Лекція 29 Власні напівпровідники
- •1. Власна провідність напівпровідників
- •2. Електронна домішкова провідність (провідність n-типу)
- •3. Діркова домішкова провідність (провідність р-типу)
- •4. Фотопровідність напівпровідників
- •Власна фотопровідність
- •Домішкова фотопровідність
- •Люмінесценція твердих тіл
- •Правило Стокса
- •2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •4. Напівпровідникові тріоди (транзистори)
- •1. Фотопровідність напівпровідників
- •Власна фотопровідність
- •Домішкова фотопровідність
- •Люмінесценція твердих тіл
- •Правило Стокса
- •2.2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •2.3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •2.4. Напівпровідникові тріоди (транзистори)
- •Контактні явища в металах
- •1. Робота виходу електронів з металу у вакуум
- •2. Контакт двох металів по зонній теорії, контактна різниця потенціалів
- •3. Термоелектричні явища: Зеєбека, Пельтьє, Томсона та їх використання
- •Контакт електронного і діркового напівпровідників (р-п-перехід)
- •1. Електронно-дірковий перехід (р-п-перехід)
- •2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •4. Напівпровідникові тріоди (транзистори)
Сили пружності. Закон Гука.
Всі тверді тіла під дією зовнішньої сили деформуються, якщо після припинення дії сили деформація тіла повністю зникає, і тіло повністю відновлює свою форму то такі тіла називають абсолютно пружними, а саму деформаціюпружною. Якщо форма тіла не відновлюється, то такі тіла називаютьнепружнимиабопластичними.
В природі існує багато твердих тіл, які при невеликих деформаціях можна вважати абсолютно пружними (метали, каучук, гума), але є і тіла (сира глина, віск, пластилін), які при малих деформаціях поводять себе як пластичні тіла.
В природі існує цілий ряд різних видів деформацій: односторонній або векторний стиск або розтяг, згин, зсув, кручення та інші.
При будь-якій деформації виникають сили, які залежать як від величини так і від типу деформації. Ці сили називаються силами пружності. Найзручніше деформацію тіл вивчати на прикладі тонкого стержня, виготовленого із пружного матеріалу, один кінець якого закріплено (Рис. 1.10).
Якщо
до незакріпленого кінця прикласти силуF, то він видовжиться під дією цієї
сили, а величина
називається абсолютним видовженням
стержня. Величина
називаєтьсявідносним видовженнямстержня.
Ці величини характеризують деформацію
тіл. В розтягнутому стержні виникає
сила пружності F, яка за третім
законом Ньютона.
Фізична величина, яка визначається із співвідношення:
(1.34)
називається механічною напругою, деS— площа поперечного перерізу стержня.
Як показують експерименти, для невеликих деформацій:
, (1.35)
тобто механічна напруга пропорційна видовженню, де Е— коефіцієнт пропорційності, який називаєтьсямодуль Юнга. Даний вираз можна записати так:
, (1.36)
, (1.37)
Позначимо:
, (1.38)
Отже: ,
азакон Гука можна сформулювати так:
Для малих деформацій сила пружності пропорційна величині деформації і напрямлена в сторону, протилежну до зміщення частинок деформованого тіла
(1.38)
Як випливає з закону при ε=1,
тобто модуль Юнга чисельно дорівнює
механічній напрузі при відносній
деформації, рівній одиниці. Він
характеризує пружні властивості різних
тіл і дається в таблицях. Одиниця
вимірювання модуля Юнга:
Як показує експеримент, при поздовжній деформації змінюються також поперечні розміри тіл. Величина
, (1.39)
де d— діаметр стержня,-
зміна цього діаметра при деформації,
називаєтьсявідносним поперечним
розтягом або стиском. Для багатьох
матеріалів відношення коефіцієнта
поперечної деформації до відносної
поздовжньої деформації
є величина стала.
Величина
(1.40)
називається коефіцієнтом Пуассонаабо модуль поперечного розтягу або стиску. Коефіцієнт Пуассона поряд з модулем Юнга є важливою характеристикою пружних властивостей твердих тіл.
Імпульс. Закон збереження імпульсу
Як відомо за ІІ законом Ньютона:
,
але
,
тоді:
(1.41)
Фізична величина, що визначається з співвідношення
(1.42)
називається імпульсом тіла. Це
векторна величина, напрям її співпадає
з напрямом вектора швидкості. Одиниці
вимірювання -.
Виходячи з означення імпульсу ІІ закон Ньютона можна записати так:
Дана рівність є більш загальною формою запису ІІ закону Ньютона, оскільки в цьому випадку ІІ закон Ньютона виконується і для тіл змінної маси.
Розглянемо систему з Nвзаємодіючих матеріальних точок. Для кожної точки цієї системи виконується ІІ закон Ньютона:
(1.43)
де
-
імпульсі- тої матеріальної точки,
-
сила, що діє з бокуk-
тої матеріальної точки наі- ту –
це є внутрішні сили даної системи,
-
зовнішня сила, що діє наі-ту
матеріальну точку.
(1.44)
Просумуємо ліві і праві частини рівностей:
(1.45)
Згідно ІІІ закону Ньютона
,
тоді:
, (1.46)
і отже (1.47)
Якщо на матеріальні точки даної системи не діють зовнішні тіла, або поля, а вони взаємодіють тільки між собою всередині системи, то така система називається замкнутою.
(1.48)
де
-
загальний імпульс замкнутої системи
матеріальних точок.
Отже для замкнутої системи можна сформулювати закон збереження імпульсу:
Імпульс
замкнутої системи матеріальних точок
є величиною сталою
(1.49)
Закон збереження імпульсу є одним із фундаментальних законів природи. Він виконується в будь-якому випадку і виражає одну із фундаментальних симетрій простору, а саме однорідність простору або трансляційну симетрію. Якщо сума проекцій зовнішніх сил, що діють на дану систему на одну із координатних осей рівна нулю, то закон збереження імпульсу буде виконуватись в проекції на цю координатну вісь.