
- •Модуль 1
- •Тема 1. Фізичні основи механіки. Кінематика Лекція 1. Основи кінематики поступального та обертального рухів Основні визначення
- •Швидкість і прискорення
- •Кінематика обертального руху
- •Лекція 2. Основи динаміки матеріальної точки та абсолютно твердого тіла Перший закон Ньютона.
- •Сила. Маса. Другий закон Ньютона.
- •Третій закон Ньютона.
- •Сили тертя
- •Сили пружності. Закон Гука.
- •Імпульс. Закон збереження імпульсу
- •Реактивний рух
- •Момент імпульсу. Закон збереження моменту імпульсу
- •Обертальний рух матеріальної точки відносно нерухомої осі
- •Теорема Штейнера (Гюйгенса)
- •Лекція 3. Робота. Енергія. Потужність
- •Робота при обертальному русі.
- •Закони збереження енергії в механіці
- •Потужність
- •Електростатичне поле та його характеристики
- •1. Електричний заряд. Закон збереження електричного заряду замкненої системи
- •2. Закон Кулона
- •3. Електростатичне поле та його напруженість. Лінії напруженості поля
- •4. Робота сил електростатичного поля по переміщенню точкового заряду
- •5. Потенціал електростатичного поля
- •6. Різниця потенціалів. Принцип суперпозиції електростатичних полів
- •7. Еквіпотенциальні поверхні
- •Лекція 05 Теорема Остроградського-Гаусса
- •Теорема Остроградського-Гауса для електростатичного поля у вакуумі
- •1. Поле рівномірно зарядженої нескінченної площини
- •2. Поле рівномірно зарядженої сферичної поверхні
- •3. Поле об'ємно зарядженої кулі
- •4. Поле рівномірно зарядженого нескінченного циліндра (нитки)
- •2. Поляризація діелектриків. Вектор поляризації
- •3. Лінії електричного зміщення і потік електричного зміщення.
- •Потік електричного зміщення для замкненої поверхні
- •4. Теорема Остроградського-Гаусса для електростатичного поля в діелектриці
- •5. Сегнетоелектрики, їх властивості та використання
- •Провідники в електричному полі
- •Електростатична індукція
- •Електрична ємність відокремленого (самотнього) провідника
- •Конденсатори, їх типи та ємність
- •Лекція 08 Постійний електричний струм
- •1. Електричний струм та його характеристики (сила, густина струму).
- •Умови існування електричного струму
- •Сторонні сили. Електрорушійна сила і напруга
- •Закон Ома
- •Опір і провідність провідників
- •Робота та потужність електричного струму
- •Правила Кірхгофа для розгалужених кіл
- •Під час розрахунку складних кіл із застосуванням правил Кірхгофа необхідно:
- •Лекція 09. Магнітне поле постійного струму Загальний опис магнітного поля
- •2. Потік вектора магнітної індукції. Теорема Остроградського-Гаусса для поля в
- •Магнітний потік крізь довільну поверхню s
- •3. Закон Біо-Савара-Лапласа та приклади його застосування (визначення індукції магнітного поля прямолінійного провідника зі струмом і магнітне поле в центрі кругового струму)
- •4. Теорема про циркуляцію векторів магнітної індукції та напруженості магнітного поля
- •Дія магнітного поля на рухомі заряди
- •1. Магнітне поле рухомого заряду
- •2. Дія магнітного поля на рухомий заряд. Сила Лоренца
- •3. Рух зарядженої частинки в магнітному полі
- •4. Формула Ампера
- •Робота по переміщенню контуру із струмом. Робота dА сил Ампера при даному переміщенні контуру (рис. 10.7) дорівнює сумі робіт по переміщенню провідників авс (dА1) і cda (dА2), тобто
- •Магнітне поле в речовині
- •1. Магнітний момент електрона і атома
- •2. Типи магнетиків
- •Намагніченість. Магнітне поле в речовині Намагніченість – це фізична величина, яка визначається магнітним моментом одиниці об'єму магнетика:
- •Феромагнетики та їх властивості Феромагнетики
- •1. Явище електромагнітної індукції. Закон Фарадея. Правило Ленца Досліди Фарадея і наслідки з них.
- •Індуктивність нескінченно довгого соленоїда. Соленоїд – це згорнутий в спіраль ізольований провідник, по якому протікає електричний струм. Повний магнітний потік соленоїда (потокозчеплення)
- •4. Енергія та об'ємна густина енергії магнітного поля
- •1. Коливання та їх типи
- •2. Механічні вільні гармонічні коливання, їх диференціальне рівняння та розв'язок
- •3. Енергія гармонічних коливань
- •Кінетична енергія
- •4. Електричний коливальний контур. Диференціальне рівняння власних електричних коливань та його розв'язок
- •Додавання гармонічних коливань
- •1. Метод векторних діаграм
- •2. Додавання гармонічних коливань одного напрямку
- •3. Биття
- •4. Додавання взаємно перпендикулярних гармонічних коливань. Поняття про фігури Ліссажу
- •Згасаючі коливання
- •1. Згасаючі механічні коливання
- •Енергія гармонічних коливань
- •Вимушені коливання
- •3. Вимушені електромагнітні коливання, диференціальне рівняння і його розв'язок і характеристики
- •4. Електричний резонанс і його використання в техніці
- •Резонанс напруг – це явище різкого зростання амплітуди сили струму в контурі при збігу циклічної частоти зовнішньої змінної напруги з власною частотою 0 коливального контура.
- •Пружні хвилі
- •1. Хвильовий процес. Види хвиль. Хвильова поверхня, фронт хвилі. Промінь
- •2. Гармонічна хвиля та її характеристики
- •3. Принцип Гюйгенса
- •4. Рівняння плоскої та сферичної хвиль
- •4. Хвильове рівняння пружної хвилі
- •Рівняння Максвелла
- •1. Аналіз явища електромагнітної індукції. Вихрове електричне поле. Циркуляція вектора напруженості вихрового електричного поля
- •2. Струм зміщення. Закон повного струму. Друге рівняння Максвелла
- •3. Система рівнянь Максвелла для електромагнітного поля в інтегральній формі. Електромагнітне поле
- •4. Вихрові струми (струми Фуко). Скін-ефект
- •2. Диференціальне рівняння електромагнітної хвилі та його дослідження
- •3. Енергія електромагнітних хвиль (об'ємна густина, потік, вектор Умова-Пойнтінга)
- •4. Тиск електромагнітних хвиль. Імпульс електромагнітного поля
- •5. Шкала електромагнітних хвиль
- •Лекція 19 Інтерференція хвиль
- •3. Стоячі хвилі
- •Лекція 20 Дифракція хвиль
- •1. Закони геометричної оптики. Дифракція світла. Принцип Гюйгенса- Френеля
- •2. Дифракція в паралельних променях на щілині
- •Квантова теорія теплового випромінювання
- •1. Теплове випромінювання, його рівноважність, характеристики
- •По спектральній густині енергетичної світимості можна розрахувати інтегральну енергетичну світимість, підсумувавши по всіх частотах:
- •2. Абсолютно чорне тіло. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закони Кірхгофа і Стефана-Больцмана
- •3. Розподіл енергії в спектрі випромінювання абсолютно чорного тіла. Закон зміщення Віна
- •4. Квантова гіпотеза Планка. Формула Планка
- •Квантова теорія атома водню. Розвиток теорії Бора. Атоми із багатьма електронами
- •1. Спектр випромінювання атома водню. Серіальна формула
- •2. Постулати Бора. Борівська теорія атома водню
- •Набір можливих дискретних частот
- •3. Квантово-механічний опис атома водню
- •4. Квантові числа: головне, орбітальне і магнітне квантові числа. Правила відбору
- •5. Орбітальні механічний та магнітний моменти електрона
- •6. Спін електрона. Спінове квантове число
- •7. Принцип Паулі. Розподіл електронів в атомі за станами. Характерні квантові числа
- •Розподіл електронів в атомі підпорядковується принципу Паулі: в одному і тому ж самому атомі не може бути більше одного електрона з однаковим набором чотирьох квантових чисел n, l, ml I mz , тобто
- •Лекція 24 Хвильові властивості мікрочастинок
- •2. Деякі властивості хвиль де Бройля
- •Фазова швидкість фотона
- •3. Співвідношення невизначеностей Гейзенберга
- •4. Хвильова функція, її статистичний зміст та властивості. Статистичний (ймовірнісний) опис мікрочастинок за допомогою хвильової функції
- •Лекція 25 Рівняння Шредінгера та його застосування
- •1. Головне рівняння нерелятивістської квантової механіки
- •2. Стаціонарне рівняння Шредінгера
- •3. Рух вільної частинки
- •4. Мікрочастинка в одновимірній прямокутній "потенційній ямі" з нескінченно високими "стінками"
- •Власні функції:
- •Нормовані власні функції:
- •5. Проходження частинки через потенціальний бар'єр прямокутної форми. Тунельний ефект
- •Лекція 26 Зонна теорія твердих тіл
- •1. Кристалічні і аморфні тверді тіла. Кристалічна гратка
- •Характерною ознакою кристалічних тіл є кристалічні гратки.
- •3. Квантова теорія електропровідності металів
- •Напівпровідники
- •3. Зонна структура металів, діелектриків та напівпровідників
- •Валентна зона – це зона, повністю заповнена електронами. Утворюється з енергетичних рівнів внутрішніх електронів вільних атомів.
- •2. Функція розподілу Бозе – Ейнштейна
- •3. Функція розподілу Фермі – Дірака Ця функція визначається аналогічно функція розподілу Бозе – Ейнштейна і має такий вид:
- •4. Поняття про виродження систем частинок, що описуються квантовими статистиками
- •5. Поняття про виродження електронного газу в металах
- •Електропровідність металів
- •1. Класична теорія електропровідності металів
- •Виведення закону Ома
- •Закон Джоуля-Ленца
- •Закон Відемана-Франца
- •Труднощі класичної теорії
- •2. Квантова теорія електропровідності металів
- •Напівпровідники
- •Лекція 29 Власні напівпровідники
- •1. Власна провідність напівпровідників
- •2. Електронна домішкова провідність (провідність n-типу)
- •3. Діркова домішкова провідність (провідність р-типу)
- •4. Фотопровідність напівпровідників
- •Власна фотопровідність
- •Домішкова фотопровідність
- •Люмінесценція твердих тіл
- •Правило Стокса
- •2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •4. Напівпровідникові тріоди (транзистори)
- •1. Фотопровідність напівпровідників
- •Власна фотопровідність
- •Домішкова фотопровідність
- •Люмінесценція твердих тіл
- •Правило Стокса
- •2.2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •2.3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •2.4. Напівпровідникові тріоди (транзистори)
- •Контактні явища в металах
- •1. Робота виходу електронів з металу у вакуум
- •2. Контакт двох металів по зонній теорії, контактна різниця потенціалів
- •3. Термоелектричні явища: Зеєбека, Пельтьє, Томсона та їх використання
- •Контакт електронного і діркового напівпровідників (р-п-перехід)
- •1. Електронно-дірковий перехід (р-п-перехід)
- •2. Фізичні процеси, що відбуваються в р-п-переході
- •Провідність p-n-переходу
- •3. Напівпровідникові діоди
- •Точковий напівпровідниковий діод
- •Площинний напівпровідниковий діод
- •4. Напівпровідникові тріоди (транзистори)
1. Поле рівномірно зарядженої нескінченної площини
Нескінченна
площина заряджена з постійною поверхневою
густиною
(
–
заряд, що припадає на одиницю поверхні).
Лінії напруженості перпендикулярні
даній площині і направлені від неї в
обидві сторони. В якості замкненої
поверхні подумки побудуємо циліндр,
основи якого паралельні зарядженій
площині, а вісь перпендикулярна їй
(рис. 3). Повний
потік крізь циліндр дорівнює сумі
потоків крізь його основи (площі основ
однакові і для основи
співпадає з Е),
тобто дорівнює 2ES.
Згідно з теоремою Остроградського-Гаусса
, 2ES
= =
,
звідки
.
Цей результат
свідчить про те, що напруженість
не залежить від довжини циліндра і на
будь-яких відстанях від площининапруженість
однакова за величиною. Картина лінійнапруженості
наведена
на рис.
Рис. 3
2. Поле рівномірно зарядженої сферичної поверхні
Сферична поверхня
радіусу R
із загальним зарядом
заряджена рівномірно з поверхневою
густиною
.
Завдяки рівномірному розподілу заряду по поверхні створюване цим зарядом поле має сферичну симетрію. Тому лінії напруженості направлені радіально (рис. 4, а).
Побудуємо подумки
сферу радіусу
,
яка має спільний центр із зарядженою
сферою. Якщо
>R,
то всередину поверхні потрапляє весь
заряд
,
що створює дане поле, і, по теоремі
Остроградського-Гаусса,
,
звідки
.
При
>R
поле спадає з відстанню
по такому ж самому закону, що і для
точкового заряду. Графік залежностіЕ
від
наведено нарис.
4, б.
Якщо
'
< R,
то замкнена поверхня не містить усередині
зарядів, тому всередині рівномірно
зарядженої сферичної поверхні Е
= 0.
Рис. 4
3. Поле об'ємно зарядженої кулі
Куля радіусу R
із загальним зарядом
заряджена рівномірно зоб'ємною
густиною
(
– заряд, що припадає на одиницю об'єму).
Внаслідок симетрії для напруженості
поля ззовні кулі матимемо той же
результат, що і у разі сферичної поверхні:
.
Усередині кулі
напруженість інша. Сфера радіусу
'<R
охоплює заряд
.
Тому, згідно з теоремою Остроградського-Гаусса,
.
Враховуючи, що
,
отримаємо
.
Графік залежності
Е
від
наведено нарис.
5.
Рис. 5
4. Поле рівномірно зарядженого нескінченного циліндра (нитки)
Нескінченний
циліндр радіусу R
заряджений рівномірно з лінійною
густиною
(
– заряд, що припадає на одиницю довжини).
Внаслідок симетрії лінії напруженості
поля будуть направлені по радіусах
кругових перерізів циліндра з однаковою
густиною у всі сторони відносно осі
циліндра. В якості замкненої поверхні
подумки побудуємо коаксіальний із
зарядженим циліндр радіусу
і висотою
.
Потік вектораЕ
крізь торці циліндра дорівнює нулю
(торці паралелі лініям напруженості),
а крізь бічну поверхню
.По теоремі
Остроградського-Гаусса
при
>R
звідки
.
Якщо
<R,
то замкнена поверхня всередині не
містить зарядів, і тому в цій області Е
= 0.
Рис.6
******************************************************************
Принцип суперпозиції. Поле диполя
Принцип суперпозиції (накладення) електростатичних полів
Напруженість Е результуючого поля, створюваного системою зарядів, рівна геометричній сумі напряженностей полів, створюваних в даній крапці кожним із зарядів окремо.
Електричний диполь
Система двох рівних по модулю різнойменних точкових зарядом (+& -0. відстань / між якими значно менше відстані до даних точок поля.
Плече диполя
Вектор, направлений по осі диполя (прямої, що проходить через оОа заряду) від негативного заряду до позитивного і рівні і відстані між ними.
Електричний момент диполя ______
Вектор
W
співпадаючий по напряму з плечем диполя.
-H+0J
За принципом суперпозиції, напруженість поля диполя . в довільній крапці Е = Е+ + Е_ (Е+ і ?_ — напруженості полів, створюваних відповідно позитивним і негативним зарядами).
Напруженість поля на продовженні осі диполя в крапці А
**********************************
ЛЕКЦІЯ 06
Діелектрики в електричному полі
Термін "діелектрик"
(від гр.
– через,
крізь і англ. еlесtrіс
– електричний) вперше ввів М. Фарадей
у 1837 р. для характеристики речовин, в
які проникає електричне (електромагнітне)
поле. Зазвичай під діелектриками
розуміють речовини, крізь які практично
погано проходить електричний струм, а
в ідеальному випадку – зовсім не
проходить. Це зумовлено внутрішньою
будовою атомів і молекул діелектриків
і, насамперед, відсутністю в них таких
зарядів, які б могли під дією поля вільно
переміщатись
на макроскопічні відстані.
Діелектрики являють собою електрично нейтральні системи: їх сумарний позитивний заряд, яких зосереджений у ядрах, і негативний заряд в електронних шарах довільного об'єму діелектричної речовини однакові.
За характером просторового розміщення заряджених часток у молекулах діелектрики поділяють на неполярні і полярні.
Діелектрики з неполярними молекулами (наприклад, гази N2, Н2, О2, СО2) – це діелектрики, які мають симетричну будову, тобто у них "центри ваги" позитивних і негативних зарядів за відсутності електричного поля збігаються і, отже, дипольний момент молекул дорівнює нулю.
Діелектрики
з полярними молекулами (наприклад,
гази СО, Н2О,
NН3,
SО2)
– це діелектрики, молекули яких за
відсутності електричного поля мають
дипольні моменти
,
які
внаслідок теплового руху зорієнтовані
в просторі хаотично і їхній результуючий
момент дорівнює нулю.
Іонні діелектрики (наприклад, NaС1, КС1) – це тверді діелектрики, іонні кристали яких є просторовими гратами з правильним чергуванням іонів різних знаків.
Можлива також класифікація діелектриків за типом симетрії і за властивостями структурних одиниць, з яких діелектрик складається (наприклад, рис. 6.1: а – монопольні, б – дипольні, в – квадрупольні, г – октупольні та ін.).
Рис. 6.1
Ні одній із класифікацій діелектриків не можна надати переваги, оскільки жодна з них не є універсальною.