Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
informatika2015.docx
Скачиваний:
131
Добавлен:
16.02.2016
Размер:
4.16 Mб
Скачать

Изменение структуры сводной таблицы

Внешний вид сводной таблицы можно изменить непосредственно на листе, перетаскивая названия кнопок полей или элементов полей. Так же можно поменять порядок расположения элементов в поле, для чего необходимо выделить название элемента, а затем установить указатель на границу ячейки. Когда указатель примет вид стрелки, перетащить ячейку поля на новое место. Чтобы удалить поле, перетащите кнопку поля за пределы области сведения. Удаление поля приведет к скрытию в сводной таблице всех зависимых от него величин, но не повлияет на исходные данные. Если же необходимо использовать все предусмотренные средства структурирования сводной таблицы, или если в текущую таблицу не были ранее включены все поля исходных данных, следует воспользоваться мастер сводных таблиц. Если же сводная таблица содержит большую группу полей страницы, то их можно разместить в строках или столбцах.

Кроме того, нужно отметить, что изменение структуры сводной таблицы не затрагивает исходные данные.

59) Назначение и основные функции автоматизированного рабочего места медицинского работника. Медицинские базы данных.

АВТОМАТИЗИРОВАННОЕ РАБОЧЕЕ МЕСТО МЕДИЦИНСКОГО РАБОТНИКА. АРМ - это аппаратно-программный комплекс, предназначенный для выполнения заранее обусловленного круга задач, связанного с профессиональной деятельностью персонала.  В состав АРМ входят следующие компоненты: 1. Системный блок различной архитектуры, адаптированной к конкрет- ной задаче работы пользователя (мощность процессора, объем опера- тивной памяти, характер видеокарты, наличие инфракрасного порта, Bluetooth, сетевой карты и др.). 2. Медицинские мониторы с размером экрана не менее 19 мм по диаго- нали и с высокой разрешающей способностью. 3. Накопители для хранения информации: магнитные, магнитооптиче- ские, CD-R, CD-RW, DVD-RAM, стримеры и др. 3 4. Устройства для получения твердых копий: принтеры различных ти- пов – лазерные, струйные, термопринтеры, мультиформатные камеры. 5. Устройства для подключения к локальной вычислительной сети и (при необходимости) к сети Интернет. 6. Системное и специализированное программное обеспечение, а также программы офисного назначения.

медицинские базы данных Российская медицина - база данных по медицине и здравоохранению создается в Государственной Центральной научной медицинской библиотеке с 1988 года и охватывает весь фонд ГЦНМБ, начиная с этого года комплектования. База содержит библиографические описания всех статей из отечественных журналов и сборников, диссертаций и их авторефератов, депонированных рукописей, неопубликованных переводов, а также отечественных и иностранных книг, сборников трудов институтов,материалы конференций, симпозиумов и т. д. Объем базы данных 658088 записей.

60.Классификация методов формализации и компьютерного моделирования медицинских данных и знаний. Основные статистические модели.

Модель — это искусственно создаваемый объект, заменяющий некоторый объект реального мира (объект моделирования) и воспроизводящий ограниченное число его свойств. Понятие модели относится к фундаментальным общенаучным понятиям, а моделирование — это метод познания действительности, используемый различными науками.

Объект моделирования — широкое понятие, включающее объекты живой или неживой природы, процессы и явления действительности. Сама модель может представлять собой либо физический, либо идеальный объект. Первые называются натурными моделями, вторые — информационными моделями. Например, макет здания — это натурная модель здания, а чертеж того же здания — это его информационная модель, представленная в графической форме (графическая модель). В экспериментальных научных исследованиях используются натурные модели, которые позволяют изучать закономерности исследуемого явления или процесса. Например, в аэродинамической трубе моделируется процесс полета самолета путем обдувания макета самолета воздушным потоком. При этом определяются, например, нагрузки на корпус самолета, которые будут иметь место в реальном полете. Информационные модели используются при теоретических исследованиях объектов моделирования. В наше время основным инструментом информационного моделирования является компьютерная техника и информационные технологии.

Компьютерное моделирование включает в себя прогресс реализмом информационной модели на компьютере и исследование с помощью этой модели объекта моделирования — проведение вычислительного эксперимента.

Формализация .К предметной области информатики относятся средства и методы компьютерного моделирования. Компьютерная модель может быть создана только на основе хорошо формализованной информационной модели. Формализация информации о некотором объекте — это ее отражение в определенной форме. Можно еще сказать так: формализация — это сведение содержания к форме. Формулы, описывающие физические процессы, — это формализация этих процессов. Радиосхема электронного устройства — это формализация функционирования этого устройства. Ноты, записанные на нотном листе, — это формализация музыки и т.п.

Формализованная информационная модель — это определенные совокупности знаков (символов), которые существуют отдельно от объекта моделирования, могут подвергаться передаче и обработке. Реализация информационной модели на компьютере сводится к ее формализации в форматы данных, с которыми "умеет" работать компьютер.

Но можно говорить и о другой стороне формализации применительно к компьютеру. Программа на определенном языке программирования есть формализованное представление процесса обработки данных. Это не противоречит приведенному выше определению формализованной информационной модели как совокупности знаков, поскольку машинная программа имеет знаковое представление. Компьютерная программа — это модель деятельности человека по обработке информации, сведенная к последовательности элементарных операций, которые умеет выполнять процессор ЭВМ. Поэтому программирование на ЭВМ есть формализация процесса обработки информации. А компьютер выступает в качестве формального исполнителя программы.

Этапы информационного моделирования

Построение информационной модели начинается с системного анализа объекта моделирования (см."Системный анализ"). Представим себе быстро растущую фирму, руководство которой столкнулось с проблемой снижения эффективности работы фирмы по мере ее роста (что является обычной ситуацией) и решило упорядочить управленческую деятельность.

Первое, что необходимо сделать на этом пути, — провести системный анализ деятельности фирмы. Системный аналитик, приглашенный в фирму, должен изучить ее деятельность, выделить участников процесса управления и их деловые взаимоотношения, т.е. объект моделирования анализируется как система. Результаты такого анализа формализуются: представляются в виде таблиц, графов, формул, уравнений, неравенств и пр. Совокупность таких описаний есть теоретическая модель системы. 

Следующий этап формализации — теоретическая модель переводится в формат компьютерных данных и программ. Для этого" используется либо готовое программное обеспечение, либо привлекаются программисты для его разработки. В конечном итоге получается компьютерная информационная модель, которая будет использоваться по своему назначению.

Для примера с фирмой с помощью компьютерной модели может быть найден оптимальный вариант управления, при котором будет достигнута наивысшая эффективность работы фирмы согласно заложенному в модель критерию (например, получение максимума прибыли на единицу вложенных средств).

Классификация информационных моделей может основываться на разных принципах. Если классифицировать их по доминирующей в процессе моделирования технологии, то можно выделить математические модели, графические модели, имитационные модели, табличные модели, статистические модели и пр. Если же положить в основу классификации предметную область, то можно выделить модели физических систем и процессов, модели экологических (биологических) систем и процессов, модели процессов оптимального экономического планирования, модели учебной деятельности, модели знаний и др. Вопросы классификации важны для науки, т.к. они позволяют сформировать системный взгляд на проблему, но преувеличивать их значение не следует. Разные подходы к классификации моделей могут быть в равной мере полезны. Кроме того, конкретную модель отнюдь не всегда можно отнести к одному классу, даже если ограничиться приведенным выше списком.

61. Вероятностная диагностика (скрининг) с использованием стратегии Байеса. Оценка информативности клинических признаков. Ограничение метода.

Диагностика была, есть и в будущем останется наиболее важной задачей медицины, а достигаемая точность диагностики в основном определяет соответствующий уровень медицинской науки. Как и любая наука, медицина в своем развитии проходит этапы накопления фактов и установления простейших зависимостей. Таковыми являются вероятностные зависимости "симптом-болезнь". И хотя число проявлений человеческого организма (признаков, которые могли бы быть использованы для диагностики) практически бесконечно, научные работы по выявлению все новых и новых из них ведутся непрерывно. Поскольку многие простые симптомы уже известны, а для более сложных, использующих инструментальные и лабораторные методы, разработаны новые методики их измерения, дальнейший диагностический поиск должен идти в направлении 2 попыток использования совокупности тестов и признаков на основе стандартизации, алгоритмизации обследования в дифференциальной диагностики заболеваний. Принципиальные трудности при дифференциальной диагностике возникают не из- за дефицита необходимой информации, а из-за отсутствия соответствующих объективных методов ее оценки - выделения симптом-комплексов (дифференциальных синдромов), которые встречаются у больных с одной из дифференцируемых болезней и ни разу не встречаются у больных с другими заболеваниями. Традиционное использование симптомов для вероятностной диагностики (метод Байеса), пригодно для статистики, определяющей на множестве больных точность диагноза, но никак не для определения конкретной болезни у конкретного индивидуума. При обследовании больного (данные анамнеза, физикальных исследований, лабораторных и инструментальных методов, клиники и т.д.) собирается огромный объем исходной информации (в настоящее время в арсенале медицины находится более 300 показателей, измеряемых преимущественно в численных шкалах). Если каждый их этих показателей измерять только в простейших шкалах наименований ("да-нет" или "больше-меньше"), то количество исходной информации составит 2300 бит, что значительно больше, чем число элементарных частиц во всей видимой части Вселенной.

Несоответствие между возможностями известных методов математического моделирования и сложностью реальных диагностических задач медицины, привели к необходимости поиска обходных путей. Одним из таких путей, интенсивно развиваемых в настоящее время, является создание экспертных систем. Экспертная система - это вычислительная система, в которую включены форма- лизованные знания специалистов в некоторой конкретной предметной области, и которая в пределах этой области способна принимать экспертные решения (решать задачи так, как это делал бы человек-эксперт). Входным" документом экспертной системы служит диагностическое заключение (предположение), которое формулируется врачом на основе данных клинических, лабораторных и инструментальных исследований. "Выходным" документом экспертной системы является рекомендуемая схема ведения и лечения пациента. Эти системы используют сложные алгоритмы, основанные на анализе связей между признаками или опираются на модели нейронных сетей. Такие системы диагностики должны использоваться как совместно с информационными системами типа электронной истории болезни, так и автономно, например, непосредственно в диагностических центрах или лабораториях. Все это избавляет врачей-диагностов и клиницистов от рутинных операций, значительно упрощает, облегчает и, в конечном счете, ускоряет их работу. На экспертные системы возлагаются задачи по раннему предупреждению о возникающих осложнениях в организме пациента, предсказанию возможных вариантов течения и различных исходах.

Существенный прогресс в области медицинских технологий лабораторной диагностики и оптимизации лечения, превращение их из интуитивного искусства немногих талантливых профессионалов (которые, кстати, в сложных случаях также могут ошибаться) в строгую науку с высоким уровнем формализации, может быть достигнут только в случае, если будет решена основная задача - получение новых системных знаний с помощью логических формализованных процедур и интерпретация этих знаний. Точнее, поиска симптом – комплексов, алгоритмов характерных для каждой конкретной дифференцируемой болезни, формального построения детерминированных матема- тических моделей конкретных болезней, описывающих зависимость результатов лечения 3 от показателей, характеризующих индивидуальность больного, болезнь и используемые лечебные воздействия; формального выбора оптимальной стратегии лечения при заданных значениях показателей, характеризующих индивидуальные особенности и проявления болезни у конкретного больного. Что касается интерпретации полученных данных, вопрос не столь простой, как он может показаться на первый взгляд. Традиционно врач при анализе полученных результатов исходит из наличия определенных признаков заболеваний, которые выявляются данным обследованием. Наиболее простым является случай, когда заболеванию соответствует однозначный набор признаков. Но организм – очень сложная система, такой случай встречается редко. Чаще наблюдаются признаки, которые с некоторой вероятностью соответствуют каким-либо заболеваниям. Хорошо, если есть возможность провести дополнительное исследование для получения увеличения количества признаков. Однако такой возможности может и не быть. Именно в связи с неполнотой данных и зачастую отсутствием четкого порога в интерпретации параметра, часто возникают проблемы в постановке надежного диагноза. В этой связи необходимо разрабатывать программные инструменты, позволяющие автоматически строить индивидуальную модель течения болезни пациента, ориентированную на физиологические особенности конкретного пациента. Одним из таких направлений является скрининг – фильтрация (алгоритмизация) по некоторому набору диагностических параметров пациентов при массовых обследованиях и выделение группы риска для проведения более полного обследования. При этом не требуется высокой достоверности первичной диагностики, поскольку порог отбора может быть задан с достаточным запасом. Для скрининга могут использоваться довольно простые алгоритмы типа дерева признаков. Однако при детальном обследовании пациента лабораторные исследования предоставляют лечащему врачу огромный и трудно обозримый поток информации (70-85%), анализ которого на практике выполняется им интуитивно на основании личного опыта или при поддержке статичных экспертных систем. Важнейшим направлением внедрения современных ИТ является применение экспертных систем, предназначенных для решения задач диагностики и лечения заболеваний, особенно в тех случаях, когда учет слишком большого объема входной информации или реализация сложного алгоритма принятия решения представляет серьезные затруднения для практического врача. Эти выводы свидетельствуют о необходимости информационных технологий в области разработки и создания алгоритмического подхода к принятию решений, разработки новых моделей информационных систем в лабораториях. Они должны обеспечивать не только документооборот, регистрацию статистических и финансовых потоков. Они должны быть направлены на оптимизацию диагностического поиска, выстраивание «логических шагов» от результата к диагнозу с использованием алгоритмического подхода в оценке патологического процесса и функционирования органов и систем пациента. Разработка программ оценки риска развития заболевания, помощь в интерпретации результатов с выдачей заключений и рекомендаций – конечная задача информационных технологий в лаборатории. Внедрение в медицинскую практику информатиционных технологий позволяет коренным образом изменить ситуацию, хотя на пути к этому есть еще множество проблем, которые необходимо решать совместными усилиями программистов- разработчиков и врачей-практиков.

63. Применение дискриминантного анализа для классификации объектов по результатам мониторинга параметров здоровья и среды обитания.

Дискриминантный анализ

Основная цель

Дискриминантный анализ используется для принятия решения о том, какие переменные различают (дискриминируют) две или более возникающие совокупности (группы).

Медик может регистрировать различные переменные, относящиеся к состоянию больного, чтобы выяснить, какие переменные лучше предсказывают, что пациент, вероятно, выздоровел полностью (группа 1), частично (группа 2) или совсем не выздоровел (группа 3). Биолог может записать различные характеристики сходных типов (групп) цветов, чтобы затем провести анализ дискриминантной функции, наилучшим образом разделяющей типы или группы.

Классификация

Другой главной целью применения дискриминантного анализа является проведение классификации. Как только модель установлена и получены дискриминирующие функции, возникает вопрос о том, как хорошо они могут предсказывать, к какой совокупности принадлежит конкретный образец?

Априорная и апостериорная классификация. Прежде чем приступить к изучению деталей различных процедур оценивания, важно уяснить, что эта разница ясна. Обычно, если вы оцениваете на основании некоторого множества данных дискриминирующую функцию, наилучшим образом разделяющую совокупности, и затем используете те же самые данные для оценивания того, какова точность вашей процедуры, то вы во многом полагаетесь на волю случая. В общем случае, получают, конечно худшую классификацию для образцов, не использованных для оценки дискриминантной функции. Другими словами, классификация действует лучшим образом для выборки, по которой была проведена оценка дискриминирующей функции (апостериорная классификация), чем для свежей выборки (априорная классификация). (Трудности с (априорной) классификацией будущих образцов заключается в том, что никто не знает, что может случиться. Намного легче классифицировать уже имеющиеся образцы.) Поэтому оценивание качества процедуры классификации никогда не производят по той же самой выборке, по которой была оценена дискриминирующая функция. Если желают использовать процедуру для классификации будущих образцов, то ее следует "испытать" (произвести кросс-проверку) на новых объектах.

Функции классификации. Функции классификации не следует путать с дискриминирующими функциями. Функции классификации предназначены для определения того, к какой группе наиболее вероятно может быть отнесен каждый объект. Имеется столько же функций классификации, сколько групп. Каждая функция позволяет вам для каждого образца и для каждой совокупности вычислить веса классификации по формуле:

Si = ci + wi1*x1 + wi2*x2 + ... + wim*xm

В этой формуле индекс i обозначает соответствующую совокупность, а индексы 1, 2, ..., m обозначают m переменных; ci являются константами для i-ой совокупности, wij - веса дляj-ой переменной при вычислении показателя классификации для i-ой совокупности; xj - наблюдаемое значение для соответствующего образца j-ой переменной. Величина Si является результатом показателя классификации.

Классификация наблюдений. Как только вы вычислили показатели классификации для наблюдений, легко решить, как производить классификацию наблюдений. В общем случае наблюдение считается принадлежащим той совокупности, для которой получен наивысший показатель классификации (кроме случая, когда вероятности априорной классификации становятся слишком малыми; см. ниже). Поэтому, если вы изучаете выбор карьеры или образования учащимися средней школы после выпуска (поступление в колледж, в профессиональную школу или получение работы) на основе нескольких переменных, полученных за год до выпуска, то можете использовать функции классификации, чтобы предсказать, что наиболее вероятно будет делать каждый учащийся после выпуска. Однако вы хотели бы определить вероятность, с которой учащийся сделает предсказанный выбор. Эти вероятности называются апостериорными, и их также можно вычислить.

Априорные вероятности классификации. Имеется одно дополнительное обстоятельство, которое следует рассмотреть при классификации образцов. Иногда вы знаете заранее, что в одной из групп имеется больше наблюдений, чем в другой. Поэтому априорные вероятности того, что образец принадлежит такой группе, выше. Например, если вы знаете заранее, что 60% выпускников вашей средней школы обычно идут в колледж, (20% идут в профессиональные школы и остальные 20% идут работать), то вы можете уточнить предсказание таким образом: при всех других равных условиях более вероятно, что учащийся поступит в колледж, чем сделает два других выбора. Вы можете установить различныеаприорные вероятности, которые будут затем использоваться для уточнения результатов классификации наблюдений (и для вычисления апостериорных вероятностей).

На практике, исследователю необходимо задать себе вопрос, является ли неодинаковое число наблюдений в различных совокупностях в первоначальной выборке отражением истинного распределения в популяции, или это только (случайный) результат процедуры выбора. В первом случае вы должны положить априорные вероятности пропорциональными объемам совокупностей в выборке; во втором - положить априорные вероятности одинаковыми для каждой совокупности. Спецификация различных априорных вероятностей может сильно влиять на точность классификации.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]