- •§ 1. Ось и отрезки оси. Координаты на прямой
- •§ 2. Декартовы прямоугольные координаты на плоскости
- •§ 3. Полярные координаты
- •§ 4. Направленный отрезок. Проекция отрезка
- •На произвольную ось. Проекции отрезка на оси координат.
- •Длина и полярный угол отрезка. Расстояние
- •Между двумя точками
- •§ 5. Деление отрезка в данном отношении
- •§ 6. Площадь треугольника
- •§ 7. Преобразование координат
- •§ 8. Функция двух переменных
- •§ 9. Понятие уравнения линии. Задание линии при помощи уравнения
- •§ 10. Вывод уравнений заранее данных линий
- •§ 11. Параметрические уравнения линии
- •§ 12. Общее уравнение прямой. Уравнение прямой с угловым коэффициентом. Угол между двумя прямыми. Условие параллельности и перпендикулярности двух прямых
- •§ 13. Неполные уравнения прямой. Совместное исследование уравнений двух и трёх прямых. Уравнение прямой «в отрезках»
- •§ 14. Нормальное уравнение прямой. Задача определения расстояния от точки до прямой
- •§ 15. Уравнение пучка прямых
- •§ 16. Полярное уравнение прямой
- •§ 17. Окружность
- •§ 18. Эллипс
- •§ 19. Гипербола
- •§ 20. Парабола
- •§ 21. Полярное уравнение эллипса, гиперболы и параболы
- •§ 22. Диаметры линий второго порядка
- •§ 23. Центр линии второго порядка
- •§ 24. Приведение к простейшему виду уравнения центральной линии второго порядка
- •§ 25. Приведение к простейшему виду параболического уравнения
- •§ 26. Уравнения некоторых кривых, встречающихся в математике и её приложениях
- •§ 27. Декартовы прямоугольные координаты в пространстве
- •§ 28. Расстояние между двумя точками. Деление отрезка в данном отношении
- •§ 29. Понятие вектора. Проекции вектора
- •§ 30. Линейные операции над векторами
- •§ 31. Скалярное произведение векторов
- •§ 32. Векторное произведение векторов
- •§ 33. Смешанное произведение трёх векторов
- •§ 34. Двойное векторное произведение
- •§ 36. Уравнение поверхности
- •§ 36. Уравнения линии. Задача о пересечении трёх поверхностей.
- •§ 37. Уравнение цилиндрической поверхности с образующими, параллельными одной из координатных осей
- •§ 38. Общее уравнение плоскости. Уравнение плоскости, проходящей через данную точку и имеющей данный нормальный вектор
- •§ 39. Неполные уравнения плоскостей. Уравнение плоскости «в отрезках»
- •40. Нормальное уравнение плоскости. Расстояние от точки до плоскости.
- •§ 41. Уравнения прямой
- •§ 42. Направляющий вектор прямой. Канонические уравнения прямой. Параметрические уравнения прямой
- •§ 43. Смешанные задачи, относящиеся к уравнению плоскости и уравнениям прямой
- •§ 44. Сфера
- •§ 45. Уравнения плоскости, прямой и сферы в векторной символике
- •§ 46. Поверхности второго порядка.
§ 29. Понятие вектора. Проекции вектора
Направленные отрезки принято называть также геометрическими векторами или просто векторами. Вектор как направленный отрезок мы будем по—прежнему записывать в тексте двумя большими латинскими буквами с общей чертой наверху при условии, что первая из них обозначает . Черт. 40
начало, вторая — конец вектора. Наряду с этим мы будем также обозначать вектор одной малой латинской буквой полужирного шрифта, которая на чертежах ставится у конца стрелки, изображающей вектор (см. черт. 40, где изображён вектор а с началом А и концом В). Начало вектора часто будет называться также его точкой приложения.
Векторы называются равными, если они имеют одинаковые длины, лежат на параллельных прямых или на одной прямой и направлены в одну сторону.
Число, равное длине вектора (при заданном масштабе), называется его модулем. Модуль вектора а обозначается символом |а| или а. Если |а| = 1, то вектор a называется единичным.
Единичный вектор, имеющий одинаковое направление с данным вектором а, называется ортом вектора а и обозначается обычно символом а0.
Проекцией вектора на осьи называется число, равное величине отрезка осии, где точка А1 является проекцией на ось и точки А, а B1 — проекцией точки В.
Проекция вектора на ось и обозначается символом: при Если вектор обозначен символом а, то его проекцию на ось и принято обозначать: приa.
Проекция вектора а на ось и выражается через его модуль и угол наклона к осии формулой
(1)
Проекции произвольного вектора а на оси некоторой заданной системы координат в дальнейшем обозначаются буквами X, Y, Z. Равенство
означает, что числа X, Y, Z являются проекциями вектора на координатные оси.
Проекции вектора на координатные оси называют также его (декартовыми) координатами. Если даны две точки M1(x1 ; у1 ; z1 ) и М2(x2 ; у2 ; z2), являющиеся соответственно началом и концом вектора а, то его координаты X, Y, Z определяются по формулам
, ,
Формула (2)
позволяет по координатам вектора определить его модуль.
Если — углы, которые составляет вектора с координатными осями (черт, 41), то называются направляющими косинусами вектора а.
Вследствие формулы (1) ,,.
Отсюда и из формулы (2) следует, что . Последнее равенство позволяет определить один из угловесли известны два других.
748. Вычислить модуль вектора а — {6; 3; — 2}.
749. Даны две координаты вектора Х=4, У= —12. Определить его третью координату Z при условии, что .
Черт. 41. 750. Даны точки А(3; —1; 2)и В(— 1; 2; 1).Найти координаты векторов и.
751. Определить точку N, с которой совпадает конец вектора а = {3; —1; 4}, если его начало совпадает с точкой М (I; 2; —3).
752. Определить начало вектора а = {2; —3; —1}, если его конец совпадает с точкой (1; —1; 2).
753. Дан модуль вектора и углы= 45°,= 60°,=120°. Вычислить проекции вектораа на координатные оси.
754. Вычислить направляющие косинусы вектора а ={12; —15; —16}.
755. Вычислить направляющие косинусы вектора
756. Может ли вектор составлять с координатными осями следующие углы: 1) = 45°, = 60°, = 120°; 2) = 45°, =135°, = 60°; 3) = 90°, =150°; = 60°?
757. Может ли вектор составлять с двумя координатными осями следующие углы: 1) = 30°, = 45°; 2) = 60°, = 60°; 3) = 150°, = 30°?
758. Вектор составляет с осями Ох и Oz углы =120° и= 45°. Какой угол он составляет с осьюОу?
759. Вектор а составляет с координатными осями Ох и Оу углы = 60°,= 120°. Вычислить его координаты при условии, что.
760. Определить координаты точки М, если её радиус—вектор составляет с координатными осями одинаковые углы и его модуль равен 3.