- •Министерство образования и науки, молодёжи и спорта украины
- •Содержание
- •Тема.1. Основные понятия и методология проектирования сложных обьектов и систем Лекция 1. Основные понятия и методология
- •1.1. Основные определения
- •1.2. Сущность процесса проектирования
- •1.3. Методология системного подхода к проблеме проектирования сложных систем
- •1.4. Системный подход к задаче автоматизированного проектирования технологического процесса
- •1.5. Системный анализ сложных процессов
- •1.6. Этапы проектирования сложных систем
- •Техническое задание
- •Этап нир
- •Этап окр
- •Этап разработки технического проекта объекта
- •Рабочее проектирование
- •Проектирование технологии изготовления спроектированного объекта
- •1.6. Контрольные вопросы и упражнения
- •Тема.2. Системный ( структурный ) уровень компьютерного проектирования сложных обьектов Лекция 2. Определение визуального моделирования
- •2.1. О пользе чертежей
- •2.2. По и другие инженерные объекты
- •2.3. Чертить по.
- •2.4. Метафора визуализации
- •2.5. Графовая метафора
- •2.6. Определение визуального моделирования
- •2.7. Средства визуального моделирования
- •2.8. О программных инструментах
- •2.9. Визуальное моделирование на фоне эволюции средств программирования
- •2.10. Семантический разрыв визуальных моделей и программного кода
- •2.11. Где выход?
- •2.12. Предметная область, модель, метамодель, метаметамодель.
- •2.13. Множество моделей по
- •2.14. Граф модели и диаграммы
- •2.15. Об операциях над графом модели и диаграммами
- •2.16. Контрольные вопросы
- •Лекция 3. Что такое The uml
- •3.1. Назначение языка
- •3.2. Историческая справка
- •3.3. Способы использования языка
- •3.4. Структура определения языка
- •3.5. Терминология и нотация
- •3.6. Контрольные вопросы
- •Лекция 4. Виды диаграмм uml
- •4.1. Почему нужно несколько видов диаграмм
- •4.2. Виды диаграмм
- •4.3. Диаграмма прецедентов (use case diagram)
- •4.4. Диаграмма классов (class diagram)
- •4.5. Диаграмма объектов (object diagram)
- •4.6. Диаграмма последовательностей (sequence diagram)
- •4.7. Диаграмма взаимодействия (кооперации, collaboration diagram)
- •4.8. Диаграмма состояний (statechart diagram)
- •4.9. Диаграмма активности (деятельности, activity diagram)
- •4.10. Диаграмма развертывания (deployment diagram)
- •4.11. Ооп и последовательность построения диаграмм
- •4.12. Контрольные вопросы
- •Лекция 5. Диаграмма классов: крупным планом
- •5.1. Как класс изображается на диаграмме uml?
- •5.2. А что внутри?
- •5.3. Как использовать объекты класса?
- •5.4. Всегда ли нужно создавать новые классы?
- •5.5. Отношения между классами
- •5.6. Контрольные вопросы
- •Лекция 6. Диаграмма активностей: крупным планом
- •6.1. А ведь это вовсе не блок-схема!
- •6.2. Примеры использования таких диаграмм
- •6.3. Советы по построению диаграмм активностей
- •6.4. Контрольные вопросы
- •Лекция 7. Диаграммы взаимодействия: крупным планом
- •7.1. Диаграммы последовательностей и их нотация
- •7.2. Диаграммы кооперации и их нотация
- •7.3. Рекомендации по построению диаграмм взаимодействия
- •7.4. Контрольные вопросы
- •Лекция 8: Диаграммы прецедентов: крупным планом
- •8.1. Несколько слов о требованиях
- •8.2. Диаграммы прецедентов и их нотация
- •8.3. Моделирование при помощи диаграмм прецедентов
- •8.4. Контрольные вопросы
- •Лекция 9: Элементы графической нотации диаграммы развертывания. Паттерны проектирования и их представление в нотации uml
- •9.1. Диаграмма развертывания, особенности ее построения
- •9.1.1. Узел
- •9.1.2. Соединения и зависимости на диаграмме развертывания
- •9.1.3. Рекомендации по построению диаграммы развертывания
- •9.2. Паттерны объектно-ориентированного анализа и проектирования, их классификация
- •9.2.1. Паттерны проектирования в нотации языка uml
- •9.2.2. Паттерн Фасад и его обозначение в нотации языка uml
- •9.2.3. Паттерн Наблюдатель и его обозначение в нотации языка uml
- •Лекция 10: Визуальное моделирование систем реального времени
- •10.1. Системы реального времени
- •10.2. Структурное подобие срв и аппаратуры
- •10.3. Многоуровневые открытые сетевые протоколы и блочная декомпозиция
- •10.4. Композитные компоненты
- •10.5. Интерфейс
- •10.6. Порт
- •10.7. Соединитель
- •10.8. Реактивные системы
- •10.9. Обзор примера
- •10.10. Контрольные вопросы
- •Лекция 11. Визуальное моделирование бизнес-процессов
- •11.1. Новая концепция бизнеса - ориентация на бизнес-процессы
- •11.2. Erp-системы
- •11.3. Моделирование бизнес-процессов
- •11.4. Пример бизнес-процесса
- •11.5. Декомпозиция бизнес-процессов
- •11.6. Исполняемая семантика бизнес-процессов
- •11.7. Бизнес-процессы и web-сервисы
- •11.8. Обзор bpmn
- •11.8.1. Действия (activities)
- •11.8.2. Связи (connecting objects)
- •11.8.3. Участники (swimlanes) бизнес-процесса
- •11.8.4. Порты (gateways)
- •11.9. Контрольные вопросы
- •12. Лекция: Этапы проектирования ис с применением uml
- •12.1. Разработка модели бизнес-прецедентов
- •12.2. Разработка модели бизнес-объектов
- •12.3. Разработка концептуальной модели данных
- •12.4. Разработка требований к системе
- •12.5. Анализ требований и предварительное проектирование системы.
- •12.6. Разработка моделей базы данных и приложений
- •12.7. Проектирование физической реализации системы
- •Тема.3. Математические модели обьектов проектирования Лекция 14. Математические модели объектов проектирования
- •14.1. Общие сведения о математических моделях
- •14.1.1. Компоненты математического обеспечения
- •14.1.2. Требования к математическим моделям и численным методам в сапр
- •14.1.3. Место процедур формирования моделей в маршрутах проектирования
- •14.2. Классификация математических моделей
- •14.3. Методика получения математических моделей элементов
- •14.3.1. Преобразование математических моделей в процессе получения рабочих программ анализа
- •14.3.2. Формализация получения математических моделей систем
- •Тема.4. Математическое обеспечение компьютерного проектирования Лекция 15. Математическое обеспечение компьютерного проектирования
- •15.1. Методы и алгоритмы анализа на макроуровне
- •15.2. Алгоритм численного интегрирования соду
- •15.3. Методы решения систем нелинейных алгебраических уравнений
- •15.4. Методы решения систем линейных алгебраических уравнений
- •15.5. Организация вычислительного процесса в универсальных программах анализа на макроуровне
- •15.6. Математическое обеспечение анализа на микроуровне
- •15.7. Методы анализа на микроуровне
- •15.8. Структура программ анализа по мкэ на микроуровне
- •15.9. Математическое обеспечение анализа на функционально–логическом уровне
- •15.10. Математические модели дискретных устройств
- •15.11. Методы логического моделирования
- •15.12. Математическое обеспечение анализа на системном логическом уровне
- •15.13. Аналитические модели смо
- •15.14. Имитационное моделирование смо
- •15.15. Событийный метод моделирования
- •15.16. Сети Петри
- •Тема.5. Интегрированные системы автоматического проектирования
- •16.2. Этапы развития информационных систем и технологий на машиностроительных предприятиях
- •16.3. Современные ит и их значение для предприятия
- •16.4. Жизненный цикл изделия
- •16.5. Обеспечение информационных систем на предприятии
- •16.6. Иерархия автоматизированных систем на предприятии
- •16.7. Общепроизводственные системы
- •Тема.6. Системы и технологии управления проектированием и
- •17.1.2. Программные продукты компании sap
- •17.1.2.1. Базисная технология системы r/3 фирмы sap
- •17.1.2.2. Sap erp
- •17.1.2.2. Sap plm
- •17.2. Информационная безопасность в cals-системах
- •17.2.1. Основные понятия и определения
- •17.2.2. Технологии построения защищенной сети виртуального предприятия
- •Лекция 18. Case – технологии Тема.7. Case-технологии компьютерного проектирования
- •Ibm Rational Rose
- •Visio поддерживает множество локальных языков
- •Тема.8. Case-средства анализа и синтеза проектных решений ис
- •Основы методологии проектирования ис
- •Структурный подход к проектированию ис
- •Состав функциональной модели
- •Иерархия диаграмм
- •Внешние сущности
- •Системы и подсистемы
- •Накопители данных
- •Потоки данных
- •Пример использования структурного подхода
- •Тема.9. Анализ, верификация и оптимизация проектных решений средствами сапр
- •Список литературы
3.4. Структура определения языка
Здесь хотелось бы рассказать о том, как описан UML его авторами. Но прежде нужно поговорить о способах описания искусственных языков вообще (например, языков программирования).
Конечно, вы уже читали книги, в которых описывались языки программирования, и не могли не заметить, как авторы этих книг все время самоотверженно балансируют между точностью и понятностью описания. Велик соблазн описать язык формально точно, но такое описание своей сложностью может отпугнуть потенциального пользователя новой технологии. С другой стороны, "понятное", неформальное описание языка может получиться очень длинным и неполным и просто запутать читателя.
Как же определен UML? Довольно часто компиляторы и IDE языков программирования написаны с использованием этих же языков (вспомните хотя бы Turbo Pascal!). Подобный метод применяется и при описании UML. Авторы использовали так называемое четырехуровневое мета-моделирование. Первый уровень - это сами данные. Второй - это их модель, т. е., например, описание их в программе. Третий - метамодель, т. е. описание языка построения модели. Четвертый - мета-метамодель, т. е. описание языка, на котором описана метамодель. Для примера - следующий рисунок, позаимствованный из стандарта UML, показывает применение этого подхода к простым записям о котировках акций (рис.3.4).

Рис. 3.4.
UML, как уже говорилось выше, описывается подобным образом. Метамодель - описание самого языка, мета-метамодель - описание формализма, с помощью которого производится описание языка. Все это сопровождается комментариями на естественном языке и примерами моделей. Организованное таким образом описание UML распространяется OMG абсолютно свободно и "лежит" на сайте OMG, по адресу http://www.omg.org/. Этот грандиозный документ насчитывает около тысячи страниц, и неподготовленному читателю имеет смысл ознакомиться в нем лишь с первым и последним разделами (краткий обзор и словарь терминов). Зато, если человек уже знаком с UML, изучение метамодели языка - весьма интересное и полезное занятие.
3.5. Терминология и нотация
Вопрос терминологии в программной инженерии, а тем более РУССКОЙ (не говоря уже об украинской) терминологии, - вопрос сложный. Дело в том, что оригинальная терминология UML не всегда последовательна и довольно запутана. Русская же терминология еще не успела сложиться, ведь UML как технология проектирования сама по себе очень молода, да и русскоязычная литература по нему стала появляться, как всегда, с некоторым опозданием. Некоторые авторы пытаются каждый термин передать "осмысленными", "хорошими русскими словами", что не всегда удается. На данный момент искать русские аналоги уже привычных английских терминов - занятие ненужное и даже вредное: вспомните, как трудно было вам найти нужную команду в меню русского MS Office, если вы привыкли пользоваться английским (в таких случаях родной язык сильно замедляет работу). Поэтому, наверное, проще использовать транскрипцию и не изобретать велосипед! В конце концов, хорошие английские слова (даже записанные русскими буквами) так же хороши, как и хорошие русские!
Теперь давайте поговорим о нотации. "Нотация" - это то, что в других языках называют "синтаксисом". Само слово "нотация" подчеркивает, что UML - язык графический и модели (а точнее диаграммы) не "записывают", а рисуют. Как уже говорилось выше, одна из задач UML - служить средством коммуникации внутри команды и при общении с заказчиком. "В рабочем порядке" диаграммы часто рисуют на бумаге от руки, причем обычно - не слишком аккуратно. Поэтому при выборе элементов нотации основным принципом был отбор значков, которые хорошо смотрелись бы и были бы правильно интерпретированы в любом случае - будь они нарисованы карандашом на салфетке или созданы на компьютере и распечатаны на лазерном принтере.
Вообще же, в UML используется четыре вида элементов нотации:
фигуры,
линии,
значки,
надписи.
Разберем все по порядку. Фигуры используются "плоские" - прямоугольники, эллипсы, ромбы и т. д. Но есть одно исключение - как мы увидим далее, на диаграмме развертывания для обозначения узлов инфраструктуры применяется "трехмерное" изображение параллелепипеда. Это единственное исключение из правил. Внутри любой фигуры могут помещаться другие элементы нотации.
О линиях стоит сказать лишь то, что своими концами они должны соединяться с фигурами. На UML диаграммах вы не встретите линий, нарисованных "сами по себе" и не соединяющих фигуры. Применяется два типа линий - сплошная и пунктирная. Линии могут пересекаться, и хотя таких случаев следует по возможности избегать, в этом нет ничего страшного.
Вообще же стоит сказать, что UML предоставляет исключительную свободу - можно рисовать что угодно и как вздумается, лишь бы можно было понять смысл созданных диаграмм. В изображении фигур и значков тоже нет каких-то жестких требований, и разработчики CASE-средств для UML-проектирования вовсю используют эту свободу, применяя различные стили рисования, заливку фигур цветом, тени и т. д. Иногда это смотрится весьма симпатично, а иногда даже раздражает.
Кстати об инструментах рисования. Мы уже упоминали, что такое ПО существует, и далее мы рассмотрим этот вопрос более подробно (проведя сравнительные исследования), пока же скажем лишь о нескольких наиболее заметных программах этого класса. К таким пакетам можно отнести:
IBM Rational Rose;
Borland Together;
Gentleware Poseidon;
Microsoft Visio;
Telelogic TAU G2.
Наиболее известными из этой пятерки являются Rational Rose и Together. Это действительно средства для проектирования, а не рисования, как Visio. Poseidon имеет бесплатную Community edition-версия этого продукта.
TAU G2 от Telelogic - это легендарное средство моделирования, которое сочетает в себе мощь и простоту использования, предоставляя уникальную возможность начальной верификации моделей. И хотя интерфейс TAU выглядит несколько аскетично, его возможности и удобство работы просто потрясают (см. http://www.telelogic.com/).
Сейчас немного не к месту об этом говорить, но хочется упомянуть еще об одном чудесном продукте, который очень помог в написании этого курса. Это Zicom Mentor от Sparx Systems, выпустившего Enterprise Architect (см. http://www.sparxsystems.com.au/). Zicom Mentor - это простая и понятная утилита, представляющая собой словарь/ассистент по UML 2.0. Zicom Mentor ответит на ваши вопросы, поможет получить и проверить ваши знания, начать новый проект. Zicom Mentor включает интерактивные курсы, электронные книги и тесты и множество другой справочной информации по UML.
Но давайте вернемся к нашему разговору. Как уже было сказано выше, UML-модель состоит из совокупности диаграмм. UML-диаграммы бывают различных видов, о многих из которых мы поговорим в следующей лекции.
Выводы
UML - еще один формальный язык, который необходимо освоить каждому, кто собирается заниматься программной инженерией.
Само собой разумеется, что знание UML не гарантирует построения разумных и понятных моделей, хотя и является для этого необходимым.
UML предоставляет огромную свободу при рисовании диаграмм и выборе инструмента рисования. Производители инструментов также воспользовались этой свободой, чтобы по своему разумению "украсить" имеющуюся нотацию.
