Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика / 10-11-12 - Элементы биомеханики, колебания и волны, биоакустика.DOC
Скачиваний:
626
Добавлен:
10.02.2016
Размер:
1.23 Mб
Скачать

2.2. Виды сокращения мышц. Основные физические характеристики мышц.

Механическая реакция целой мышцы при ее возбуждении выражается в двух формах: в развитии напряжения и в сокращении. В естественных условиях деятельности в организме человека степень сокращения может быть различной. По величине и характеру можно выделить три типа мышечных сокращений:

1) Изотонический – это сокращение мышцы, при которой ее волокна укорачиваются при постоянной внешней нагрузке. В реальных движениях чисто изотоническое сокращение практически отсутствует.

2) Изометрический – это тип активации мышцы, при котором она развивает напряжение без изменения своей длины. Изометрическое сокращение лежит в основе статической работы.

3) Ауксотонический или анизотонический тип-это режим, в котором мышца развивает усилие и укорачивается. Именно такие сокращения имеют место в организме при движении-ходьбе, беге. Данный тип сокращений лежит в основе динамической работы организма человека.

При динамической работе выделяют концентрический тип сокращения (внешняя нагрузка меньше, чем развиваемое мышцей напряжение) и эксцентрический тип сокращения (внешняя нагрузка больше, чем напряжение мышцы). В этом случае мышца напрягаясь, все же удлиняется, совершая при этом отрицательную работу.

Основные физические характеристики мышц.

1) Абсолютная мышечная сила - это сила, приходящаяся на 1см2 общего поперечного сечения мышечных волокон, образующих мышцу (в связи с особенностью строения некоторых мышц это не всегда совпадает с поперечным сечением самой мышцы). Например, для икроножной мышцы человека эта сила в среднем равна 60 Н/см2, для двуглавой мышцы плеча - 110 Н/см2, для треглавой – 170 Н/см2. Усилие, которое развивает сокращающаяся мышца, можно определить по второму закону Ньютона:

(2.3)

где М– масса нагрузки,а- ее ускорение,Р- внешняя нагрузка.

2) Скорость укорочения мышцы – отношение величины укорочения мышцы dx ко времени dt.

(2.4)

3)Механическая работа. Общая механическая работа сокращения

(2.5),

где Aм - работа, затрачиваемая на укорочение самой мышцы, Px – механическая работа по перемещению нагрузки.

4) Теплообразование (выделяющаяся при сокращении мышцы теплота).

Теплота, выделяемая мышцей во время фазы сокращения при изотоническом одиночном сокращении, складывается из двух составляющих: теплоты активации и теплоты укорочения. Теплота активации qa представляет собой тепловой эффект тех химических процессов, которые приводят мышцу из небозбужденного состояния в активное. Теплота активации не зависит от укорочения и произведенной работы.

Теплота укорочения образуется только при укорочении мышцы и не зависит от напряжения (нагрузки) сократившейся мышцы, если только нагрузка не влияет на укорочение. По Хиллу, теплота укорочения q прямо пропорциональна величине укорочения x:

q=a x (2.6),

где aпостоянный для данной мышцы коэффициент, имеющий размерность силы.

Общую теплоту можно выразить уравнением:

(2.7)

5) Энергия одиночного мышечного сокращения.

Закон сохранения энергии для рабочей фазы изотонического одиночного сокращения имеет вид:

(2.8),

где А – произведенная механическая работа, состоящая из работы по подъему груза и работы по созданию ускорения (см. формулу 2.5). Так как работа по созданию ускорения составляет приблизительно одну сотую общей механической работы, совершаемой мышцей, ее можно не учитывать и формула (2.8) с учетом формулы (2.5) принимает вид:

(2.9)

6) Общая мощность.

(2.10)

Учитывая, что теплота активации qa – величина постоянная и,следовательно,, формула мощности в фазе сокращения принимает вид:

(2.11)

где V– скорость сокращения мышцы.

7) Уравнение Хилла.

Экспериментально было установлено, что мощность скелетной мышцы прямо пропорциональна ее нагрузке, т.е.

(2.12),

где Pmax – сила изометрического сокращения, т.е. сила, развиваемая мышцей при максимальной нагрузке (в состоянии титануса при данной длине); P-нагрузка, под которой мышца укорачивается; bпостоянная величина, имеющая размерность скорости.Приравнивая формулы (2.11) и (2.12) между собой, получим уравнение Хилла:

(2.13)

Уравнение Хилла применимо к любому виду сокращения. Оно справедливо как для изотонического сокращения активной мышцы, так и для описания упругого укорочения покоящейся мышцы после удаления нагрузки.

8) Коэффициент полезного действиямышцы определяется как отношение полезной работыАп=Px к затраченной работе:

(2.14)