Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
61
Добавлен:
09.02.2016
Размер:
5.26 Mб
Скачать

181

были включены компартменты, учитывающие процесс метаболизма ксенобиотиков, его связывание с тканями, внутрипеченочную циркуляцию и т.д. Однако для проверки правильности этих моделей требуется выполнение очень большого числа сложных экспериментов по определению содержания веществ и его метаболитов в различных органах и тканях. Часто получаемая информация не оправдывает затраты. Наконец, рассчитываемые константы справедливы только для принятой исследователем модели и не сопоставимы с константами, полученными в других моделях. В этой связи в практической токсикологии все чаще используют характеристики не зависящие от моделирования (метод определения ППК), получаемые при однокомпартментном моделировании или с помощью физиологических гемодинамических моделей (см. ниже).

6.3. Нелинейные токсикокинетические процессы Модели, рассматривавшиеся выше, основаны на представлении, согласно которому скорость

процессов, зависит только от концентрации веществ в объеме распределения (крови) V = f(с), а динамика концентрации вещества в объеме распределения подчиняется кинетике 1-го порядка. В соответствии с этим представлением токсикокинетика вещества может быть описана рядом линейных уравнений (см. выше). Однако такое представление справедливо лишь для системы, находящейся в состоянии динамического равновесия. На практике в биологии чаще имеют дело с неравновесными состояниями. В этой связи экспериментальные данные существенно отклоняются от полученных с помощью математического моделирования. Особенно часто это имеет место в тех случаях, когда вещество само влияет на процессы собственной резорбции, распределения, метаболизма, элиминации.

Кчислу нелинейных токсикокинетических процессов могут быть отнесены так называемые "насыщающиеся процессы": канальцевая секреция ксенобиотиков в почках, метаболизм веществ в печени, связывание веществ белками плазмы крови и т.д. С насыщающимися процессами сталкиваются при исследовании механизмов активного транспорта веществ через барьеры. Так, элиминация этилового спирта из организма не подчиняется кинетике 1-го порядка, носит все признаки насыщаемого процесса (0 порядок). В этом случае скорость эвакуации вещества не зависит от его концентрации в объеме распределения и является величиной постоянной во времени, а следовательно не может быть отнесен к линейным процессам. Элиминация спирта из организма - пример нелинейной токсикокинетики.

Основные последствия кинетики насыщающихся процессов следующие:

- увеличение дозы вводимого вещества не приводит к пропорциональному увеличению его концентрации в объеме распределения;

- более высокая концентрация вещества в объеме распределения не сопровождается увеличением скорости выведения вещества из организма;

- повторное введение вещества не дает такого эффекта, который можно было бы ожидать, исходя из расчетов, основанных на данных, полученных при однократном введении;

- повторное введение не приводит к накоплению в организме вещества в концентрации, которую можно было бы ожидать, исходя из расчетов, основанных на данных, полученных при однократном введении.

Кнелинейности кинетических процессов приводит также взаимодействие нескольких веществ друг с другом: влияние на процессы связывания, прохождения через биологические мембраны, изменение объемов распределения, индукция энзимов и т.д. Влияние нелинейности может быть математически учтено

впроцессе создания как однокомпартментной, так и многокомпартментных кинетических моделей.

При нелинейности процессов изменяются значения многих характеристик токсикокинетики веществ (период полувыведения, клиаренс и т.д.).

6.3.1. Нелинейная однокомпартментная модель распределения с ограниченным характером процесса элиминации

Если установлено, что процесс элиминации ксенобиотика подчиняется уравнению Михаэлиса-Ментен, это свидетельствует о его насыщаемости:

С* = - Vmax C /(KM + C) = - KE KM C /(KM + C), где

С* - изменение концентрации вещества в системе; С - концентрация вещества в системе;

Vmax - максимальная скорость процесса (например выведения); KM - константа Михаэлиса или константа полунасыщения системы; KE - константа элиминации:

KE = Vmax/KM

Как видно из уравнения при низких концентрациях вещества в плазме (С< < KM) скорость элиминации прямо пропорциональна С:

С* = -(Vmax/KM

Напротив, в случаях, когда С> > KM процесс элиминации не зависит от концентрации вещества:

С* = -Vmax

В этом случае имеем:

С(t) = C(o) - Vmax t

Это уравнение описывает, например, снижение содержания алкоголя в крови человека при его концентрации выше 0,1 мг/л. Если содержание вещества ниже этого значения процесс подчиняется кинетике 1-го порядка, то есть становится линейным.

Уравнение, описывающее процесс, может быть представлено в иной форме: lnC(t) = lnC(o) - KE t + [ (C(o) - C(t)/KM]

Представление в полулогарифмической шкале координат дает график прямой в диапазоне малых концентраций, где процесс линеен и подчиняется кинетике 1-го порядка (при С(о)® 0, (C(o) - C(t)/KM ® 0).

В областях высоких концентраций зависимость носит более сложный характер, но выпрямляется в системе обычных координат (рисунок 8)

182

Рисунок 8. Зависимость содержания вещества в плазме крови от времени при насыщающемся характере элиминации ксенобиотика

7. Физиологические токсикокинетические модели Для конкретизации токсикокинетических исследований и оценки состояния организма после контакта с

токсикантом порой важно представлять реальные характеристики движения веществ в органах и тканях. Но эти характеристики зависят от параметров резорбции, распределения, метаболизма, выведения веществ через эти органы и тканы. Если их определять с помощью методов компартментного моделирования, то получаемые значения будут условны, т.к. зависят от особенностей выбранной модели. Кроме того при математическом моделировании невозможно, например, представить почему при введении в организм противоопухолевого средства адриамицина развивается именно кардиотоксический эффект.

Эти трудности удается отчасти преодолеть, используя физиологические модели, разрабатываемые с учетом анатомо-физиологических особенностей органов и тканей у различных биологических видов (на которых изучается токсикокинетика), таких как объем, масса органа, кровоток через органы, связывание с белками, проницаемость гистогематических и клеточных барьеров, интенсивность и характер метаболизма в органах и т.д. (таблица 3).

Таблица 3. Сравнительная характеристика некоторых биометрических параметров организма человека и крысы (самцы)

Параметр

Крыса

Человек

Человек/ крыса

Масса тела, г

300

70000

233

Масса (% от массы тела):

 

 

 

-печени

5,22

2,28

0,44

-почек

0,42

0,43

1,0

-сердца

0,32

0,41

1,28

-легких

0,43

1,50

3,49

-надпочечников

0,0084

0,02

2,38

Площадь поверхности, м2

0,048

1,88

39

Продолжительность жизни, дни

103

26 103

26

Основной метаболизм:

 

 

 

-ккал/кг сут

109

25,6

0,23

-ккал/м2 сут

908

953

1,05

Потребление пищи, г/кг сут

50

10

0,20

Время вынашивания плода, сут

22

280

12,72

Общий белок крови, г/дл

8,01

6,71

0,84

Альбумины/глобулины крови

0,95

1,66

1,75

(По Oser B.L., 1981)

С помощью такого подхода можно достаточно хорошо представить токсикокинетику веществ, осмыслить влияние биометрических параметров на особенности токсикокинетических характеристик. Поскольку биометрические параметры органов видоспецифичны, видоспицефичны и токсикокинетические параметры ксенобиотиков, а поскольку между биометрическими параметрами и параметрами кинетики существует количественная связь, данные полученные на животных можно с достаточной точностью переносить на человека, подставляя в полученные на лабораторных животных эмпирические уравнения, соответствующие биометрические параметры органов и тканей человека.

При разработке физиологических моделей распределения веществ между органами и тканями обычно исходят из схемы кровоснабжения организма, которая для всех млекопитающих, по сути, одинакова.

Обычно выбирают для исследования интересующий орган (например, сердце при изучении кинетики гликозидов, или мозг при изучении психодислептиков), а для нерастворимых в жирах веществ из рассмотрения вообще убирают жировую ткань. Для каждого органа может быть построена либо упрощенная, либо полная, основанная на учете всех особенностей его кровоснабжения, метаболизма, функций, модель (рисунок 9).

183

Рисунок 9. Схематическое представление органа в физиологической токсикокинетической модели В упрощенном виде обычно рассматривают две возможности:

а) преимущественное влияние на характер распределения вещества особенностей кровоснабжения органа;

б) преимущественное влияние на распределение вещества свойств гистогематического барьера.

Если переход веществ из одного компартмента в другой (например, из крови в ткань) осуществляется значительно быстрее, чем прохождение крови через исследуемый орган, говорят о преимущественной зависимости распределения вещества от особенностей гемодинамики, если значительно медленнее - о преимущественной зависимости от свойств барьера.

Следующий этап исследования состоит в составлении уравнения баланса масс распределения для каждого органа или ткани. Например, такое уравнение для органа "i" с лимитирующим фактором распределения "особенности кровоснабжения" можно представить следующим образом:

Vi dCi/dt = Qi [ Ca - (Ci/Ri)] , где Vi - объем органа;

Qi - скорость кровотока через орган;

Ca - концентрация токсиканта в артериальной крови;

Ri - коэффициент распределения вещества в системе кровь/орган; dCi/dt - скорость изменения концентрации токсиканта в органе.

Таким образом, скорость накопления вещества в органе (Vi dCi/dt) зависит от:

-концентрации вещества в крови;

-скорости кровотока в органе;

-скорости диффузии вещества из других органов в кровь и наоборот;

-скорости биотрансформации веществ.

Практическое значение подобного подхода зависит от физической возможности исследователя получить большое количество экспериментальных данных, необходимых для насыщения физиологической модели конкретной информацией. Поскольку большая часть информации может быть получена только в ходе экспериментальных исследований на лабораторных животных, необходим следующий этап работы, а именно: получение данных о влиянии биометрических характеристик органов и систем на параметры токсикокинетики ксенобиотиков.

Установлению этого влияния были посвящены многочисленные исследования. При этом для математического описания связей между сравниваемыми величинами использовали аллометрические уравнения вида:

y = x , где

y - исследуемая токсикокинетическая характеристика (например клиаренс); х - биометрическая характеристика (например, масса органа элиминации);

, - коэффициенты корреляции, требующие экспериментальной оценки.

Поскольку токсикокинетические характеристики изучаются в организмах существенно отличающихся друг от друга биометрическими показателями (массой, размерами, интенсивностью метаболизма, частотой сердечных сокращений и т.д.) сравнительная оценка получаемых величин для разных видов живых существ порой в значительной степени затруднена.

Иногда удается преодолеть возникающие трудности путем использования для анализа экспериментального материала некоего единого масштаба, учитывающего особенности физиологии организмов. Так, установлено, что период полуэлиминации цефалоспорина у 5 различных видов живых существ значительно различается (у мыши - 10 мин, у собаки - 60 мин, у человека - 90 мин). Однако, при переводе полученных данных к "единой шкале измерений", установлено, что у всех видов период полуэлиминации равен 7253 сокращениям сердечной мышцы (J. Mordenti, 1986).

184

РАЗДЕЛ 5. ФАКТОРЫ, ВЛИЯЮЩИЕ НА ТОКСИЧНОСТЬ

ГЛАВА 5.1. ВНУТРИ- И МЕЖВИДОВЫЕ ОСОБЕННОСТИ ОРГАНИЗМОВ И ИХ ВЛИЯНИЕ НА ЧУВСТВИТЕЛЬНОСТЬ К КСЕНОБИОТИКАМ

Представители различных видов живых существ по-разному, как в количественном, так и качественном отношении, реагируют на действие химических веществ (межвидовые различия). Это позволяет создавать с утилитарными целями вещества с "избирательным" действием, т.е. такие, токсичность которых в отношении определенного вида (видов) живых существ во много раз превосходит токсичность для других видов. На этом принципе строится разработка многочисленные пестицидов, антибиотиков и т.д. Представители одного и того же вида также, порой, неодинаково чувствительны к токсикантам (внутривидовые различия).

Неодинаковая токсичность одного и того же соединения для различных организмов обусловлена как наследуемыми, так и благоприобретенными особенностями их морфо-функциональной организмции, сказывающимися на токсикокинетике и токсикодинамике веществ.

1. Генетически обусловленные особенности реакций организма на действие токсикантов Информация, заключенная в молекулах хромосомной и экстрахромосомной ДНК определяет

морфологические, физиологические и биохимические особенности каждой клетки, которые реализуются в ходе её развития и взаимодействия с окружающей средой. Дифференцировавшиеся клетки, принадлежащие к различным органам и системам, используют лишь часть генетической информации, заключенной в ДНК. Она то и определяет, каким образом каждая клетка будет реагировать на токсикант.

Помимо генетических механизмов, чувствительность отдельного организма к токсиканту определяется взаимодействием внутренних факторов (гормональный фон, интенсивность обмена веществ и т.д.) и факторов внешней среды.

1.1. Межвидовые различия При изучении токсичности веществ на разных видах лабораторных животных, как правило выявляются

определенные различия. Для некоторых веществ, например гликозидов (строфантин), фторацетата эти различия весьма существенны, для других (гексахлорциклогексан) - выражены слабо (таблица 1).

Таблица 1. Токсичность (ЛД50 мг/кг) некоторых веществ для животных различных видов

 

 

 

 

 

 

 

 

 

 

 

Строфантин

 

Гексахлор

 

Диизопропил

 

Фторацетат

Вид

 

 

циклогексан

 

фторфосфат

 

натрия

 

(подкожно)

 

 

 

 

 

 

(через рот)

 

(в/в)

 

(через рот)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

крысы

 

50 - 100

 

75 - 88

 

-

 

6,9

мыши

 

 

 

 

 

8 - 13

 

86

 

0,4

 

-

лягушки

 

 

 

 

 

0,4 - 1,0

 

-

 

-

 

-

кролики

 

 

 

 

 

0,1 - 0,4

 

60

 

-

 

-

морские

 

 

 

 

 

0,1 - 0,3

 

127

 

-

 

-

свинки

 

 

 

 

 

0,15 - 0,2

 

-

 

-

 

-

кошки

 

 

 

 

 

0,1 - 0,15

 

50

 

3,4

 

0,07

собаки

 

 

 

 

 

-

 

-

 

0,8

 

-

козы

 

 

 

 

 

-

 

-

 

0,25

 

-

обезьяны

 

 

 

 

 

-

 

-

 

-

 

1,0

лошади

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Большие различия выявляются при оценке на лабораторных животных токсичности диоксина (таблица

2).

Таблица 2. Токсичность 2,3,7,8-тетрахлодибензопарадиоксина (ТХДД) для разных видов животных.

Вид животного

ЛД50, мкг/кг

 

 

 

 

Морская свинка

0,6-2,5

 

 

 

 

Норка

4

 

 

 

 

Крыса

22-45

 

 

 

 

Обезьяна

менее 70

 

 

 

 

Кролик

115-275

 

 

 

 

Мышь

114-280

 

 

 

 

Собака

менее 300

 

 

 

 

Лягушка-бык

менее 500

 

 

 

 

Хомяк

5000

 

 

 

 

Летальная доза вещества (ЛД50) - комплексная величина. На её значение оказывают влияние особенности резорбции, распределения, биотрансформации, выведения токсиканта, особенности взаимодействия с биомишенями и формирования токсического процесса. Каждый из упомянутых факторов

взависимости от вида животных может существенно влиять на токсичность ксенобиотика.

1.1.1.Особенности токсикокинетики

1.1.1.1. Резорбция

185

Квота резорбции вещества через аналогичные пути поступления у представителей различных видов далеко не одинакова. Так, 6-азауридин разорбируется кожными покровами целого ряда лабораторных животных, но не человека. Напротив, актиномицин хорошо всасывается в желудочно-кишечном тракте человека, но не лабораторных животных.

1.1.1.2. Распределение Часто одно и тоже вещество по-разному распределяется в организмах представителей различных

видов. Так, объем распределения пропранолола (в пересчете на 1 кг массы тела) у человека составляет 3,62, обезьян - 0,60, собаки - 1,71, крысы - 5,30, кошки - 1,57. Причинами таких различий являются особенности структуры белков крови, а следовательно и способности связывать ксенобиотики, кровоснабжения отдельных органов и тканей, содержания жира в организме. Вследствие этого, не смотря на введение животным разных видов одинаковой дозы вещества, его содержание в органах-мишенях у этих животных будет различным.

Заслуживает внимания такая характеристика, как диаметр пор гломерулярной мембраны. Так, у человека в почках через барьер не проникают молекулы с массой более 15000, у собаки - 4000, у крысы - 2000.

1.1.1.3. Биотрансформация Видовые различия характеристик биотрансформации ксенобиотиков по большей части носят

количественный, реже качественный характер. Существует обратная связь между массой тела животного и скоростью ферментативного превращения чужеродного соединения, поэтому прямой перенос данных по токсичности вещества, полученных на одном виде животных на другой чреват большой вероятностью ошибки. Мелкие лабораторные животные, как правило, менее чувствительны к токсикантам, чем большие (таблица 3).

Таблица 3. Чувствительность животных различных видов к гексобарбиталу (вводимые дозы -100 мг/кг; для собаки - 50 мг/кг).

 

 

 

 

 

 

 

Вид

Время сна

период

полу-

превращения

Активность

энзимов

(мин)

гексобарбитала (мин)

 

(мкг/г/час)

 

 

 

 

мыши

12

19

 

 

598

 

кролики

49

60

 

 

294

 

крысы

95

139

 

 

134

 

собаки

315

261

 

 

36

 

Кошки являются исключением из этого правила. Они метаболизируют вещества чрезвычайно медленно. Многие лекарственные препараты, например, фенитоин, аминазин, дезипрамин, резерпин сохраняются в организме этих животных днями. Действие одной дозы резерпина продолжается в течение 3 недель. Детоксикация ксенобиотиков в организме человека протекает также медленно, причем процесс идет с иной скоростью, чем в организме приматов, не смотря на их эволюционную близость.

Активность энзимов отдельных органов и тканей, участвующих в метаболизме чужеродных соединений у разных видов живых существ, как в отношении различных субстратов, так и отдельных реакций, варьирует в широких пределах (таблица 4).

Таблица 4. Активность бензпирен-гидроксилазы (в условных единицах) и её чувствительность к индукции полициклическими углеводородами в органах лабораторных животных

 

 

 

 

 

 

 

Животное

Печень

 

Почки

Легкие

Кишечник

Кожа

Мышь

11

 

0,03

0,2

1,0

0,7

Обезьяна

2,5

 

0,4

0,2

0,1

0,02

Способность энзима к индукции

 

 

 

 

Контроль (1,0)

1,5

 

10

3 - 10

6

4 - 11

(D.W. Nebert, H.V. Gelboin, 1969)

В соответствии с уровнем активности процесса О-деэтилирования этилморфина лабораторные животные могут быть ранжированы следующим образом: морская свинка > мышь > крыса. В отношении N- деметилирования, зависимость иная: мышь > крыса > морская свинка.

Как следует из данных, приведенных в таблице 5, основываясь на данных по активности микросомальных ферментов печени, невозможно оценить a priori скорость метаболизма ксенобиотика.

Таблица 5. Активность процессов биопревращения ксенобиотиков (мкМ метаболита/час/г микросомальных белков; 27о) и содержания цитохромовР-450 и b5 (мкМ/г микросомальных белков) в печени трёх видов животных

 

 

 

 

Активность

Мышь

Морская свинка

Крыса

p-NO2-анизол-О-деметилаза

40

70

20

аминопирин-N-деметилаза

140

70

140

анилин-гидроксилаза

32

10

20

НАДФН-цитохром С-редуктаза

1680

2190

1620

НАДФН-цитохром Р-450-редуктаза

86

36

10

цитохром Р-450

0,6

0,7

1,0

цитохром B5

0,3

0,4

0,3

Другими примерами видовых различий метаболизма ксенобиотиков являются неодинаковое соотношение процессов биологического окисления и конъюгации (таблица 6).

Таблица 6. Видовые различия в скорости отдельных этапов метаболизма дихлорметилена

 

 

 

 

 

 

Образование

промеж.

Образование

Соотношение

Вид

продуктов при

участии Р450;

конъюгатов при участии

скоростей метаболизма

 

Vmax (мг/час кг)

 

GS-трансферазы

GS-T/Р450

186

 

 

Vmax (мг/час кг)

 

Мышь

12,4

1208

98

Крыса

2,7

91

34

Хомяк

6,8

26

4

Человек

1,4

3,4

2,5

(D.V. Parke et al., 1990)

Действие токсикантов на животных с различным механизмом метаболизма ксенобиотиков будет различным, особенно в тех случаях, когда происходит образование активных метаболитов. Этим обстоятельством, вероятно, можно объяснить резистентность морских свинок к действию канцерогена 2- ацетиламинофлюорена, и мышей к канцерогену афлатоксину В1.

1.1.1.4. Экскреция Установлено, что видовые различия в чувствительности к веществам слабо метаболизируемым в

организме могут быть обусловлены существенными различиями в скорости их выведения. Особенно это касается ксенобиотиков удаляемых с помощью механизма активной секреции в мочу или желчь. Так, оуабаин быстро выводится из организма крыс с желчью, но у собак и кроликов процесс идет медленно. Известно, что скорость экскреции существенно зависит от размеров выделяемой молекулы. У различных видов животных оптимальные значения молекулярной массы токсиканта, выделяемого через почки или печень неодинаковы. Для веществ-анионов, выделяющихся через печень, порог молекулярной массы составляет у крыс около 325, морской свинки - 400, кролика - 475. Для катионов с различной массой молекулы отсутствуют видовые различия в скорости билиарной экскреции: порог выведения для всех упомянутых видов животных составляет 200 - 250.

1.1.2. Особенности токсикодинамики 1.1.2.1. Связывание с рецептором

Первичная структура и конформация рецепторов, взаимодействующих с ксенобиотиками, тем более различаются у представителей различных видов, чем дальше отстоя друг от друга эти виды в филогенезе. В этой связи и сродство токсикантов к рецепторам, выделенным из тканей различных животных и человека неодинаково, как неодинакова и их токсичность. Так, EC50 гликозида оуабаина для Na,K-АТФазы, выделенной из миокарда собаки и быка более чем 350 раз ниже, чем для этого же энзима, полученного из тканей крысы и мыши.

Содержание рецепторов определенного вида в аналогичных тканях животных различных видов также не одинаково. Например выносящий семенной канатик мыши содержит преимущественно -опиатные

рецепторы, крысы и кролика - рецепторы преимущественно - и -типов. И этим также обусловлены различия токсичности веществ для представителей разных видов.

1.1.2.1. Эффекторные реакции Строение, физиология, биохимия живых существ, принадлежащих различным классам организмов,

глубоко различны. Эти различия носят не только количественный, но и качественный характер, не смотря на известное эволюционное родство организмов. Адаптация живых существ даже близких видов к различным средам обитания, условиям существования, обусловливает особенности их реактивности на внешние раздражители, в том числе и на химические воздействия. Этот факт широко известен. Его обсуждение может быть осуществлено лишь в рамках специального курса по эволюционной токсикологии и выходит далеко за рамки настоящей книги.

1.2. Внутривидовые различия 1.2.1. Генетические особенности личности

Токсичность ксенобиотиков для различных людей колеблется в достаточно широких пределах. Эти колебания обусловлены внутривидовой изменчивостью. В основе изменчивости лежат генетические особенности организмов одного и того же вида. Иногда генетические особенности людей и даже целых семей выражены столь существенно, что это проявляется в их необычайно высокой чувствительности к тем или иным токсикантам, выходящей за рамки доверительного интервала изменчивости популяции. Выяснение причин таких особенностей является предметом токсикогенетических исследований. Как правило повышенная чувствительность обусловлена мутацией генов, отвечающих за синтез некоторых энзимов, регуляторов биотрансформации ксенобиотиков, рецепторных структур или транспортных белков. Выявляемые при этом аномалии могут иметь как моногенетическую, так и полигенетическую природу. До какого-то времени эти аномалии могут не проявляться фенотипически. Их манифестация происходит лишь при контакте организма с определенными токсикантами. В качестве примера можно привести дефекты глюкозо-6-фосфатдегидрогеназы или гемоглобина. Лица с подобными генетическими дефектами реагируют на целый ряд веществ (сульфо-, нитро-, аминосоединения и т.д.) бурным образованием метгемоглобина и гемолизом.

У некоторых лиц с очень низкой скоростью протекает реакция ацетилирования ксенобиотиков и их метаболитов. Так, обычно период полупревращения гидразина и его производных в организме человека составляет 40 - 80 минут. У лиц с низкой скоростью ацетилирования - 150 - 200 минут. Количество лиц с таким дефектом метаболизма в Европе составляет около 50%. Поскольку биопревращение гидразина сопровождается его детоксикацией, число лиц с высокой чувствительностью к данному токсиканту велико. Прием лекарств, синтезированных на основе гидразина, у пациентов с дефектом N-ацетилтрансферазы нередко приводит к развитию полинейропатий. Установлено, что лица с медленным процессом ацетилирования ксенобиотиков гомозиготны по аутосомальному рецессивному гену.

Дефект N-ацетилтрансферазы лежит в основе неблагоприятных реакций на целый ряд медикаментов, таких как фенелзин, дапсон, дигидролазин, прокаинамид, сульфапиридин, нитрозепам и др. (рисунок 1). Так, при приеме такими лицами дигидролазина или прокаинамида в организме могут появиться антинуклеарные

187

антитела, что, в свою очередь, проявляется состоянием, напоминающим диссеменированную форму красной волчанки.

Рисунок 1. Структура веществ, вызывающих у чувствительных лиц состояние, напоминающее красную волчанку

Примерно у 10% европейцев понижена интенсивность N-окисления спартеина и 4-гидроксилирования дибрезохина. У этих же лиц понижена метаболическая активность в отношении ксенобиотиков с близким химическим строением.

В качестве причин понижения метаболической активности спартеина и дибрезохина рассматривается функциональный дефект или понижение количества изоферментов цитохром-Р-450 зависимых оксидаз.

Еще один вид генетической аномалии удалось выявить при назначении пациентам суксаметониума. Этот миорелаксант в норме разрушается холинэстеразой плазмы крови на холин и янтарную кислоту. Благодаря высокой активности энзима у большинства людей длительность действия препарата исчисляется минутами. Однако у некоторых, при введении установленной дозы вещества развивается длительная миорелаксация и апное. Активность фермента у таких лиц составляет лишь 10 - 20% от нормы, поскольку в крови циркулирует атипичная псевдохолинэстераза. Дефект энзима наследуется по аутосомальному рецесстивному механизму.

Имеются и другие аномалии энзимов, имеющие большое токсикологическое значение. Среди них

дефекты: алкогольдегидрогеназы, параоксоназы, каталазы, дофамин- -монооксигеназы, моноаминоксидазы, глютатионсинтетазы, глюкуронозилтрансферазы, катехол-О-метилтрансферазы, тиопуринметилтрансферазы, тиолметилтрансферазы.

1.2.2. Различия связанные с полом Наиболее отчетливо выражены различия в чувствительности самцов и самок к токсикантам у грызунов.

Однако выявляемые закономерности справедливы для других млекопитающих и человека. Основная причина феномена - особенности токсикокинетики ксенобиотиков. Так, кожа спины самок крыс примерно в два раза более проницаема для мочевины, бензойной кислоты и кортизона, чем кожа самцов. Существенно различны скорость и характер метаболизма чужеродных соединений. Микросомы, выделенные из гепатоцитов самцов имеют примерно в два раза большее сродство к гексобарбиталу и амидопирину (но не анилину), в сравнении с микросомами печени самок. В этой связи продолжительность действия барбитуратов на самцов меньше, чем на самок. Деметилирование бензфетамина и метиланилина, гидроксилирование бензпирена и анилина, глукуронизирование ряда токсикантов - примеры процессов, протекающих в организме самок с меньшей скоростью, чем в организме самцов.

Кастрация или введение самцам эстрогенов нивелируют различия в скорости метаболизма ксенобиотиков в организме животных разных полов. Напротив, тестостерон, введенный кастрированным самцам, позволяет вновь выявить различия. Показано, что эффект гормона обусловлен в большей степени анаболической составляющей его активности.

В связи с изложенным токсичность многих ксенобиотиков для самцов и самок лабораторных животных, мужчин и женщин - неодинакова.

188

Различия токсичности веществ при остром и хроническом введении могут иметь разную направленность. Так, при остром введении ЛД50 паратиона для самцов крыс составляет 30 мг/кг, для самок - 3 мг/кг. При хронической аппликации токсичность вещества для самцов, напротив, выше. Это объясняют тем обстоятельством, что при острой интоксикации эффект вещества связан с его антихолинэстеразной активностью, а при хронической - с действием метаболита паратиона, нитрофенола, на систему крови.

Метаболические превращения ксенобиотиков могут различаться не только количественно, но и качественно. Например при интоксикации диельдрином в моче самцов и самок обнаруживаются разные продукты метаболизма. При введении самкам крыс анальгетика тиарамида до 65% вещества выводится с мочой в форме сульфоконьюгата. При введении препарата самцам этот метаболит вообще не обнаруживается в моче.

Различия токсичности веществ, связанные с полом, у человека выражены слабо. Вместе с тем, процесс резорбции некоторых веществ проходит с разной скоростью. Так, у женщин в желудочно-кишечном тракте хуже всасывается салициловая кислота. Ксилокаин хуже, а диазепам лучше связывается с белками крови женщин, чем мужчин. У женщин, как правило, больше жировой ткани, что сказывается на характере распределения гидрофильных и гидрофобных ксенобиотиков. Активность некоторых энзимов, метаболизирующих чужеродные соединения у мужчин и женщин неодинакова. Так, активность эстеразы ацетилсалициловой кислоты у мужчин выше, а моноаминоксидазы - ниже.

2. Не обусловленные генетически особенности реакции организма на действие токсикантов 2.1. Возрастные различия

В процессе индивидуального развития человека и животных выделяют эмбриональный, фетальный, неонатальный, перинатальный, а также периоды созревания, зрелого возраста и старости. Чувствительность организма к токсикантам в эти периоды различна. Это обусловлено процессами развития, созревания и дифференциации тканей, возрастными особенностями морфологии, физиологии и биохимии органов и систем организма. В различные периоды развития и жизни организма подвергаются существенным изменениям: характер вазкуляризации тканей, проницаемости гистогематических и иных барьеров, функции нервной, эндокринной, иммунной систем и т.д. На таблице 7 представлены некоторые различия между организмами, находящимися в разных периодах развития и жизни, сказывающиеся на чувствительности к ксенобиотикам.

Таблица 7. Некоторые функционально-морфологические различия между организмами, находящимися в различных периодах развития и жизни

Различия между неонатальным периодом и зрелым возрастом 1. Резорбция в желудочно-кишечном тракте.

Проницаемость для белков (иммуноглобулинов) и других макромолекул возрастает на короткий период сразу после родов.

Скорость всасывания чужеродных соединений выше. Кислотность кишечного содержимого понижена. Скорость эвакуации содержимого желудка ниже.

2. Распределение.

Более высокое соотношение объемов экстрацеллюлярной/интрацеллюлярной жидкости. Более низкое содержание жировой ткани.

Понижена способность белков плазмы крови связывать ксенобиотики. Повышена проницаемость гематоэнцефалического и ликворного барьеров. Более высокая относительная масса мозга и печени.

3. Биотрансформация.

Масса гладкого эндоплазматического ретикулума в гепатоцитах в постнатальном периоде возрастает. Биотрансформация чужеродных соединений в целом низка, в постнатальном периоде возрастает. Способность к индукции микросомальных ферментов у новорожденных выше, чем у взрослых.

4. Экскреция.

Соотношение масса почек/масса тела у новорожденных в два раза выше, чем у взрослых. Число и размеры почечных клубочков у новорожденных ниже.

Фильтрационная способность невысокая, в постнатальном периоде повышена. Канальцевая секреция редуцирована; постепенно повышается в процессе созревания. Скорость реабсорбции выше.

Секреция желчи ограничена.

Различия между периодом зрелости и старости

1.Резорбция в желудочно-кишечном тракте. Постепенное снижение числа резорбирующих клеток. Повышение рН содержимого желудка.

Снижение подвижности желудочно-кишечного тракта. Понижение интенсивности обмена в слизистой тонкой кишки.

2.Распределение

Уменьшение количества воды в организме. Увеличение количества жировой ткани. Ослабление кровотока в тканях.

Снижение проницаемости гистогематических барьеров. Снижение связывающей способности белков крови.

3. Биотрансформация.

Частичное снижение метаболической активности пеячени.

189

4. Экскреция.

Незначительное понижение почечной секреции. Замедление почечной экскреции.

2.2. Влияние массы тела Более высокая, в сравнении с нормой, масса тела как правило является следствием избыточного

накопления жировой ткани. Вещества, накапливающиеся в жире в этом случае действуют слабее. Ожирение нередко сопровождается нарушением функций печени, поэтому у тучных людей характер токсического действия некоторых ксенобиотиков может существенно изменяться.

2.3. Влияние беременности Во время беременности изменяются многие параметры организма: масса тела, соотношение объемов

интра- и экстрацеллюлярной жидкости, содержание жировой ткани, скорость эвакуации желудочного содержимого, концентрация белков плазмы крови, относительный объем сердца, кровоснабжение почек, интенсивность клубочковой фильтрации и т.д. Все это естественно приводит к значительному изменению чувствительности беременных к токсикантам. К тому же измененный гормональный фон сказывается на активности энзимов, участвующих в метаболизме ксенобиотиков. В большинстве случаев практически не возможно предсказать, как измениться токсичность вещества при беременности. Это следует устанавливать в каждом случае экспериментально.

Достаточно подробно изучался метаболизм ксенобиотиков в организме беременных крыс. Установлено, что активность анилингидроксилазы, этилморфин-N-деметилазы, дифенил-4-гидроксилазы, билирубинглюкуронозилтрансферазы, катехол-О-метилтрансферазы, нитроредуктазы, моноаминоксидазы понижается. Содержание цитохрома Р-450 также снижено. Аналогичные результаты получены и на других видах лабораторных животных, в частности, на кроликах.

190

ГЛАВА 5.2. ВЛИЯНИЕ УСЛОВИЙ ПРОВЕДЕНИЯ ЭКСПЕРИМЕНТА И КАЧЕСТВА СРЕДЫ ОБИТАНИЯ НА ТОКСИЧНОСТЬ

Биологические системы постоянно обмениваются с окружающей средой веществом, энергией, информацией и потому их функциональное состояние находится в полной зависимости от состояния среды. В определенных границах биосистемы способны приспосабливаться к изменению свойств окружающей среды. При этом изменяются их биохимические, физиологические, морфологические характеристики, а, стало быть, и чувствительность к ксенобиотикам. Колебания чувствительности к ядам в зависимости от условий, в которых яд действует, отмечаются на всех уровнях организации жизни: клеточном, органном, организменном, популяционном. Наибольшее количество данных по этому вопросу получено в эксперименте применительно к целостному организму лабораторных животных различных видов. Имеются отдельные наблюдения на людях. Проблема практически не изучена на уровне популяций, хотя в будущем это может иметь очень большое значение для решения практических экотоксикологических задач.

Свойства среды влияют на все звенья цепи формирования и развития токсического процесса: резорбцию, распределение, метаболизм, элиминацию ксенобиотика, взаимодействие его с рецепторами, активацию патологических и репаративных процессов. Наиболее значимые факторы представлены в таблице 1.

Таблица 1. Факторы, оказывающие влияние на токсичность ксенобиотиков

1.Биологические или биосоциальные - питание

- условия содержания (для лабораторных животных) - окружение

2.Физические

-геофизическая периодичность

-температура

-давление

-влажность воздуха

-концентрация ионов и Рн

-апплицируемый объем

-концентрация действующего агента и его агрегатное состояние

3. Химические

-ксенобиотики в окружающей среде

-ксенобиотики в воде и пище

-совместное воздействие нескольких веществ

Между действием отдельных факторов в реальных условиях трудно провести границу. Так, временная периодичность в изменении чувствительности организма к ксенобиотику зависит как от геофизических факторов (смена дня и ночи, времен года), так и от биосоциальныхъ факторов, генетических особенностей организма и т.д.

1. Питание Количество и качество потребляемой пищи оказывают сложное влияние на чувствительность человека

и животных к токсикантам. У лиц, находящихся на диете богатой белками, но бедной углеводами период полупревращения феназона уменьшается на 7 часов (с 16,2 до 9,5 часов), теофиллина с 8,1 до 5,2 часов. При переходе на диету с противоположным соотношением белков и углеводов в пище период полупревращения ксенобиотиков возрастает. Дефицит в пище белков и липидов приводит к снижению интенсивности метаболизма ксенобиотиков печенью. В этой связи токсичность веществ, подвергающихся в организме биоактивации, понижена у лиц находящихся на белковой диете. Содержание углеводов в потребляемой пище мало сказывается на интенсивности процесса метаболизма ксенобиотиков и на их токсичности.

Хроническое недоедание понижает резорбцию веществ в желудочно-кишечном тракте и скорость их метаболизма. Развивающаяся гипоальбуминемия приводит к снижению фракции веществ, связывающихся альбуминами плазмы крови. В итоге, элиминация токсикантов путем биотрансформации угнетается, но почечная экскреция проходит с большей скоростью.

Голод редуцирует активность энзимов печени, разрушающих чужеродные соединения. У крыс, уже через 16 часов голода отмечается отчетливое снижение активности процесса N-деметилирования ксенобиотиков, причем у самцов эффект выражен сильнее, чем у самок. Вероятно, в период голодания нарушается активирующее действие андрогенных гормонов на микросомальные энзимы.

2. Условия содержания экспериментальных животных В условиях эксперимента удалось установить, что токсичность веществ зависит от того, содержатся ли

они изолированно или группой. Токсичность некоторых веществ, действующих на ЦНС, при изолированном содержании животных ниже (таблица 2).

Таблица 2. Токсичность некоторых веществ (мг/кг; через рот) для мышей при изолированном и групповом содержании

 

 

 

 

Вещества

Групповое

изолированное

ЛД50изол/ЛД50груп

содержание

содержание

 

 

Фенамин

34

232

6,8

Кофеин

620

1200

1,9

Пикротоксин

19

30

1,6

Мескалин

880

1180

1,3

Пентилентетразол

265

290

1,1

Бемегрид

120

120

1,0

Соседние файлы в папке военная мед фотки и методички