Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
61
Добавлен:
09.02.2016
Размер:
5.26 Mб
Скачать

191

Иногда механизмы, лежащие в основе явления, затрагивают глубинные физиологические характеристики организма. Так, установлено, что при продолжительной изоляции мышей в хвостатом ядре мозга возрастает содержание дофаминергических рецепторов. Этим можно объяснить усиление двигательной активности животных и более высокую толерантность их к дофаминомиметикам (фенамин, кофеин, мескалин). Изоляция приводит также к уменьшению числа мест связывания серотонина в коре головного мозга, промежуточном мозге, коре мозжечка, что сопровождается усилением агрессивности. Количество ГАМК-рецепторов, через которые реализуется судорожная активность бициклофосфатов, норборнана, пикротоксина и др. в коре головного мозга уменьшается; количество рецепторов, через которые осуществляется этанол-потенцирующее действие бензодиазепинов и барбитуратов, снижается в промежуточном мозге и коре мозжечка.

Однако часто можно обнаружить и достаточно простые причины наблюдаемых эффектов. Например, при изолированном содержании животных выше теплоизлучение организма, а влажность окружающего воздуха ниже. Температурный режим и влажность среды, в свою очередь, могут оказывать существенное влияние на токсичность веществ, что подтверждается экспериментально. Так, ЛД50 морфина сульфата при 19О для животных (мыши) при изолированном и групповом содержании составляет 520 и 490 мг/кг соответственно; при 29О - 434 и 368 мг/кг.

На групповых животных (крысы, мыши) неблагоприятным образом сказывается шум. Ограничение пространства и свободы движений действует на них как стрессорный фактор.

3. Содержание в стерильных условиях У животных, рожденных и выращенных в стерильных условиях, отсутствует кишечная флора. Это

является причиной полного прекращения у них процессов внутрикишечного метаболизма ксенобиотиков, в частности деглюкуронидирования конъюгатов, и подавления внутрипеченочной циркуляции некоторых чужеродных веществ. Полагают, что этим можно объяснить значительное снижение (в сравнении с контролем) частоты появления опухолей кишечника и молочной железы, развивающихся при введении животным 3,2-диметил-4-аминофенола. В обычных условиях канцероген подвергается в печени N- гидроксилированию, а затем и глюкуронидированию. После попадания метаболита в кишечник с желчью

происходит его расщепление под влиянием -глюкуронидазы кишечной флоры и образование исходного вещества, активно реабсорбирующегося слизистой ЖКТ. Длительная внутрипеченочная циркуляция диметил-аминофенола и, следовательно, продолжительное пребывание в организме, способствуют реализации канцерогенного действия токсиканта. У животных, содержащихся в стерильных условиях, внутрипеченочная циркуляция подавлена. Вследствие этого существенно ускоряется экскреция вещества из организма, снижается вероятность развития патологических процессов.

4. Периодические изменения чувствительности к токсикантам Многие биологические процессы, такие как синтез ДНК, РНК, белков, нейромедиаторов, активность

энзимов, параметры гемодинамики, рН мочи, количество электролитов в моче, температура тела, количество форменных элементов в крови, гормональная активность, интенсивность обмена веществ и т.д. - постоянно, достаточно ритмично изменяются во времени. У человека и животных выявлено более 100 ритмических изменений различных характеристик и функций организма. Естественно, что чувствительность организма к токсикантам также постоянно изменяется.

4.1. Циркадные ритмы Циркадными, называются суточные колебания показателей жизнедеятельности, обусловленные

генетическими механизмами и выявляемые даже на клеточном уровне. У различных видов живых существ характер суточной ритмики различен. Так, у людей максимальное содержание кортикостероидов в крови определяется утром, в момент пробуждения, у крыс - вечером, при приближении темного времени суток, т.е. также в конце периода покоя. Эти колебания регулируются, в основном, сменой светлого и темного времени суток, а также некоторыми биосоциальными факторами. В основе суточных колебаний чувствительности человека и высших животных к токсикантам лежат изменения активности энзимов, метаболизирующих ксенобиотики, содержания гормонов в крови и нейромедиаторов в нервной ткани, спонтанной подвижности кишечника и многие другие причины.

Так, токсичность ингибиторов холинэстеразы для крыс коррелирует с содержанием ацетилхолина в ткани мозга животных. В те периоды, когда содержание нейромедиатора высоко, возрастает токсичность ингибиторов. Напротив, токсичность холинолитика атропина возрастает, когда содержание ацетилхолина снижается. Продолжительность сна мышей, вызванного гексобарбиталом, максимальна между 8 и 14 часами суток, когда активность ферментов, метаболизирующих препарат, снижена, и минимальна - между 20 и 2 часами, на фоне максимальной активности энзимов. Адренэктомия приводит к прекращению циркадной ритмики активности микросомальных энзимов и чувствительности к ксенобиотику, что связано с прекращением колебания содержания в крови кортикостероидных гормонов.

Поскольку чувствительность организма к различным токсикантам изменяется вследствие колебания характеристик разных биологических процессов, общая временная зависимость изменения токсичности для всех ксенобиотиков отсутствует, и для каждого вещества в отдельности, в случае необходимости, определяется экспериментально.

С учетом сказанного, исследования по оценке острой токсичности веществ следует проводить в одно и тоже время суток.

4.2. Годичные ритмы Годичные изменения чувствительности к токсикантам особенно характерны для холоднокровных

животных. Однако некоторые колебания чувствительности отмечаются и у теплокровных. Например, у крыс линии Wistar в течение года определяются достоверные изменения чувствительности к токсическому действию никотина. Не исключено, что это связано с колебаниями среднесуточной температуры и влажности воздуха. Максимальная токсичность выявляется в теплое время года.

5. Температура окружающего воздуха

192

Скорость течения различных биологических процессов изменяется в зависимости от изменения температуры не одинаково. Температурный коэффициент Q10 показывает на сколько меняется скорость того или иного процесса при изменении температуры на 10О.

Q10 = Vt/V(t-10)

Q10 для физико-химических процессов находится в интервале 1,1 - 1,5, химических реакций - 2 - 3, а для отдельных биохимических процессов и выше. Диффузия токсикантов и их метаболитов через биологические барьеры, будучи физическим процессом, в меньшей степени зависит от температуры, чем течение, скажем, биохимических реакций превращения веществ в тканях. Однако диффузия является важным механизмом поступления большинства ксенобиотиков в организм. Поэтому, при более высоких температурах резорбция химических веществ, в целом, идет с большей скоростью, чем при низких. В этой связи охлаждение места действия токсиканта (место укуса ядовитых змей, насекомых) иногда может замедлить скорость резорбции яда и развития поражения. На таблице 3 представлены данные, поясняющие это положение.

Таблица 3. Содержание метадона в тканях экспериментальных животных (мкг/г), через 30 минут после подкожного введения, в зависимости от температуры окружающего воздуха.

Вид животных

Ткань

Доза (мг/кг)

18О

29О

 

 

(%)

 

 

мозг

 

2,0

3,1

55

крыса

печень

20,0

10,2

12,1

25

 

кровь

1,2

2,1

75

 

 

 

мозг

 

4,8

6,7

40

мышь

печень

33,0

19,0

23,0

21

 

кровь

2,8

3,8

36

 

 

(F. Herr et al., 1956)

Резорбция через кожу также существенно возрастает при повышении температуры. Так, 4 из 5 обезьян переносят зарин в концентрации 115 мг/м3 при экспозиции в течение 30 минут и температуре окружающего воздуха 25О; при 38О при тех же условиях выживает 1 из 5 животных. Однако, анализируя подобные результаты, следует помнить, что в еще большей степени чем на диффузию ксенобиотика через гистогематические барьеры, температура влияет на интенсивность кровоснабжения тканей, то есть на процесс доставки к ним токсиканта.

С изменением температуры изменяется реактивность организма. Изменяется, например, частота и сила сердечных сокращений. Это, в свою очередь, приводит к изменению реакции сердечной мышцы на действие токсиканта. Так, в опытах in vitro, g-строфантин в концентрациях 0,05 - 0,2 мкг/мл при 37О перфузируемого раствора повышал изометрическое систолическое напряжение папиллярных мышц сердца кошки. При 27О эффект не наблюдался. Причина феномена состоит в том, что при низкой температуре спонтанная недостаточность сердечной мышцы развивается значительно медленнее, чем при 37О, а действие гликозидов отчетливо прослеживается только при недостаточности миокарда. Выраженность

действия адреналина и -адреноблокаторов на изолированное предсердие и папиллярные мышцы сердца кролика также существенно зависит от температуры.

Интенсивность биотрансформации ксенобиотиков возрастает при предварительном охлаждении экспериментальных животных, при этом в крови у них возрастает уровень гормона щитовидной железы (индуктор метаболизма ксенобиотиков), а в печени - содержание цитохромаР-450. Установлено, что за сутки в организме крысы при 35О окружающего воздуха выделяется около 1,7 мкг тироксина, при 20 - 25О - 5,2 мкг, в условиях холода - 9,5 мкг.

Хроническая гипертермия также сопровождается изменением токсикокинетических характеристик многих ксенобиотиков. При изолированном содержании крыс в течение месяца при температуре окружающего воздуха близкой к 35О С существенно снижается клиаренс пропранолола, антипирина, теофиллина, дигоксина. С другой стороны кинетика фенитоина в аналогичных условиях не изменяется.

Теоретические основы влияния температуры окружающего воздуха на токсичность ксенобиотиков для млекопитающих разработаны недостаточно. Известно, что температура среды сказывается на температуре тела животных, однако зависимость не носит линейного характера. Так, в опытах на мышах изучали зависимость ректальной температуры животных от температуры окружающего воздуха. При температуре окружающего воздуха 20О ректальная температура составляла около 36О, при 25О - снижалась до 34О, и при 35О - составляла более 37О (W. Usinger, 1957). В этой связи следует ожидать, что чувствительность экспериментальных животных и человека к токсикантам будет определяться не только величиной температуры окружающего воздуха, но и продолжительностью воздействия, выходящего за рамки адаптационного комфорта.

Как правило в большей степени зависит от температуры окружающей среды токсичность веществ, влияющих на температуру тела. Существенно влияют на температуру тела токсиканты, влияющие на механизмы нейромедиаторной передачи нервных импульсов в холинэргических, катехоламинергических, серотонинергических синапсах. Токсичность этих веществ, в свою очередь, существенно зависит от температуры. Так, токсичность ФОС (понижают температуру тела) для крыс снижается при содержании животных в условиях компенсируемой гипертермии (до 300 С). Напротив токсичность холинолитиков (повышают температуру тела) в этих условиях увеличивается. Ухудшается при повышении температуры окружающего воздуха и переносимость и некоторых симпатомиметиков (нафтизин). Однако характер зависимости и механизм, лежащий в основе эффекта, в каждом случае должны устанавливаться эмпирически. Так метадон понижает температуру тела мыши. Однако его токсичность при 29О в 2,9 раза выше, чем при 18О.

193

Допуская значительные упрощения, можно выделить три основных вида зависимости между значением температуры окружающей среды и токсичностью ксенобиотиков для экспериментальных животных (рисунок 1). Каждому из этих типов соответствуют определённые токсикодинамические механизмы.

Рисунок 1. Основные виды зависимости между температурой окружающей среды и токсичностью ксенобиотиков

194

ГЛАВА 5.3. ЯВЛЕНИЯ, НАБЛЮДАЕМЫЕ ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ТОКСИКАНТОВ Реакция живых систем на ксенобиотик может существенно изменяться при его повторном или

длительном воздействии. Выделяют четыре основные формы проявления этого феномена: толерантность, химическая зависимость, привыкание и хроническое отравление. Первые три формы развиваются при контакте с веществом, поступающим в организм в действующей дозе, т.е. первоначально вызывающей отчетливый эффект. Эти формы интересуют токсиколога прежде всего при оценке действия веществ, которые человек как правило принимает умышленно: лекарственные препараты, наркотические средства, вредные привычки (курение, прием алкоголя) и т.д. Последняя развивается в результате длительного контакта с токсикантом в малых, близких к пороговым, или даже подпороговых, дозах. Эта форма рассматриваемого явления интересует токсиколога применительно к проблеме профессиональной патологии и экотоксикологии.

1.Толерантность

Вряде случаев при повторном введении действующей дозы отмечается понижение чувствительности организма к веществу. Этот феномен обозначается, как "толерантность". Толерантность возникает не только у человека (у лиц длительно использующих фармакологические средства, наркоманов и токсикоманов). В условиях эксперимента толерантность можно сформировать у животных, причем не только у млекопитающих, но и у членистоногих, червей, простейших, бактерий и т.д.

Толерантность формируется лишь в отношении ограниченного круга веществ. Скорость и выраженность феномена также не одинаковы при действии различных токсикантов. В ряде случаев толерантность может быть тесно связана с еще одним явлением, получившим название "зависимость" от ксенобиотика (см. ниже).

1.1. Виды толерантности

Воснову классификации различных форм толерантности могут быть положены разные принципы. По скорости её формирования выделяют:

- острую форму (тахифилаксия) - возникает после однократного или повторного действия вещества; - хроническую форму - развивается при частом и длительном контакте с веществом.

По механизму формирования:

- кажущуюся (мнимую, диспозиционную); - истинную (функциональную, клеточную).

Кажущаяся толерантность является следствием изменения токсикокинетики вещества: параметров его резорбции, распределения, биотрансфрмации, экскреции. В этом случае продолжающееся действие токсиканта в неизменной дозе сопровождается постепенным снижением его концентрация в области локализации соответствующей биомишени.

Истинная толерантность является следствием изменения токсикодинамики развивающегося процесса: функциональной модификации биомишени (селективных рецепторов, эффекторных систем и т.д.), адаптации клеток к иным условиям внутренней среды организма и т.д.

Основными механизмами толерантности являются: 1.Ослабление резорбции;

2.Усиление элиминации (экскреции, метаболизма);

3.Модификация распределения;

4.Количественные/качественные изменения биомишеней и эффекторных систем клеток; 5.Конкурентное и неконкурентное экранирование рецепторов, с которыми взаимодействуют токсиканты,

продуктами их метаболизма или веществами, образующимися в ходе развития токсического процесса; 6.Истощение запасов нейромедиаторов вследствие длительного воздействия синаптических ядов. Формирование толерантности к конкретным веществам возможно по одному или нескольким из

перечисленных механизмов.

1.2. Некоторые механизмы толерантности 1.2.1. Ослабление резорбции

Повторное воздействие токсикантов может приводить к изменению свойств барьерных тканей (кожи, слизистой оболочки ЖКТ, дыхательных путей) и, в итоге, ослаблению резорбции.

Например, толерантность к хроническому пероральному приёму мышьяка объясняют нарушением его всасывания слизистой кишечника. Изменения слизистой кишечника, при приеме металла, характеризуется явлениями хронического воспалительного процесса, сопровождающегося, в частности, угнетением секреторных функций желез. Поскольку растворение неорганических соединений мышьяка возможно лишь в большом количестве щелочного кишечного секрета, постепенное уменьшение его образования и выделения может стать причиной толерантности к яду.

Прямой зависимости между способностью провоцировать воспалительные процессы в пограничных тканях и скоростью развития, выраженностью толерантности к веществу нет. Однако в ряде случаев эффект выявляется достаточно отчетливо. Так, в опытах на мышах показано, что газы, раздражающие слизистые дыхательных путей, такие как озон, оксиды азота, фосген, оксиды серы и др. при несмертельном поражении вызывают отек альвеолярно-капиллярного барьера. Скорость формирования реакции, в зависимости от вида газа и его концентрации, 1 - 5 суток, продолжительность - до нескольких недель. В этот период, токсикант, при повторном воздействие, становится менее токсичным, вследствие ухудшения его диффузии. В группе мышей (10 штук) смертность при экспозиции NO2 в концентрации 285 ppm в течение 30 минут составляет 100% при средней продолжительности жизни 9 часов. При предварительной ингаляции (за 4 суток) животными вещества в течение 10 минут в концентрации 394 ppm, повторное воздействие оксида азота в смертельной концентрации не вызывало гибели мышей. Авторы наблюдения (Henschler et al., 1964) связывают эффект с усилением гидрофильности легочной ткани и ухудшением диффузии газов в легких.

Возможно формирование перекрестной толерантности к действию различных раздражающих газов.

195

1.2.2. Усиление метаболизма ксенобиотиков Многие вещества являются индукторами энзимов (см. выше), участвующих в метаболизме

ксенобиотиков. Эти энзимы обладают слабой субстратной специфичностью и потому индукторы, как правило, усиливают биотрансформацию целой группы ксенобиотиков. К индукторам относятся и вещества, имеющие широкое клиническое применение, в частности, барбитураты, дифенилгидантион, диазепам, ницетамид, мепробамат и др. На фоне длительного приема подобных препаратов изменяется чувствительность организма к самым разным токсическим веществам (например производственным агентам). После прекращения приема индукторов их действие продолжается в течение достаточно продолжительного времени. После введения индукторов-барбитуратов нормализация чувствительности к ксенобиотикам у мышей занимает 1 - 4 недели, у собак - до 4 месяцев. Степень модификации чувствительности организма к токсикантам на фоне индукторов невысока и как правило не превышает 1,5 - 2 раз в сравнении с контролем.

В некоторых случаях токсиканты являются индукторами собственного метаболизма. Хорошо известно, что хроническое потребление этанола приводит к развитию толерантности. В опытах на приматах установлено, что существует тесная корреляция между потреблением спирта и скоростью его элиминации (таблица 1).

Таблица 1. Изменение скорости элиминации этанола из организма шимпанзе и макаки резус (мг/кг/час) после хронического приема и в периоде отмены

 

 

 

Группы

Шимпанзе

Макака

Контроль

223,8

167

Хроническое введение

322,41

3362

Абстиненты

2133

156,34

1 - время потребления 6 - 14 недель: максимальное количество этанола - 5,5 - 7,7 г/кг/сутки; 2 - время потребления 29 недель: максимальная доза - 6,5 мг/кг/сутки; 3 - время отмены: 1 - 51 неделя; 4 - время отмены: 29 неделя.

(Pieper, Skeen, 1973).

Интересно отметить, что у животных с развившейся толерантностью к этанолу, в большей степени выявляется увеличение активности алкогольдегидрогеназы мозга, чем печени (активность практически в пределах нормы).

1.2.3. Усиление экскреции.

При повторном введении веществ, активно выводящихся через почки, нередко отмечается усиление этого процесса. Так, значительно повышается, при повторном приеме, почечное выделение парааминогиппуровой кислоты. Ежедневное, в течение 8 дней, введение крысам самцам этого вещества в количестве 3 грамм в сутки приводит к более чем двукратному увеличению содержания вещества в моче (в сравнении с количеством, выделенным после первого введения).

Аналогичные наблюдения сделаны и для некоторых других веществ. Так, при повторном введении ускоряется выведение из организма пенициллина. Неспецифический характер ускорения почечного выведения веществ с кислотными свойствами при их повторном введении предполагает возможность развития перекрестной толерантности. Например, при длительном назначении парааминогиппуровой кислоты увеличивается клиаренс таких веществ как пробеницид, фенолрот, пенициллин, сульфаметоксипиридазин и др. Этот эффект угнетается ингибиторами белкового синтеза. Можно сделать вывод о возможности индукции синтеза белков, ответственных аз активный печеночный транспорт, самим же транспортируемыми веществами.

1.2.4. Изменение распределения Изменение характера распределения токсиканта можно рассматривать как одну из причин

формирования толерантности. Однако экспериментальные и клинические данные, подтверждающие это предположение, практически отсутствуют. Для отдельных веществ (например, хлордиазепоксида) у толерантных животных отмечается снижение проницаемости гематоэнцефалического барьера. Однако клиническое значение этого явления остается не ясным.

1.2.5. Изменение рецепторов и реактивных систем Для большого количества ксенобиотиков толерантность формируется вследствие количественных и

качественных изменений рецепторов или связанных с ними реактивных систем. Следует выделить следующие причины толерантности:

-снижение способности связываться с рецептором;

-увеличение числа рецепторов;

-снижение эффективности реактивных систем, связанных с рецептором-мишенью для токсиканта.

Эти изменения могут развертываться изолированно или в комбинации, вследствие чего и скорость наступления толерантности различна при действии различных веществ.

1.2.6. Индукция веществ-антагонистов Еще одним механизмом развития толерантности может явиться экранирование биомишени для

токсиканта продуктами его метаболизма или другими веществами, синтезируемыми в организме. Сюда же можно отнести синтез гаптенов или специальных антител, связывающих исходное вещество, при его продолжительном введении.

1.2.7. Истощение запасов нейромедиаторов Если к раствору, которым перфузируют препарат изолированного уха кролика добавлять эфедрин в

постоянной концентрации, то через некоторое время, прессорный эффект вещества исчезает. Аналогичный эффект наблюдается при инфузии собаке раствора эфедрина (0,99 мг/кг) или амфетамина (0,36 мг/кг). Не смотря на продолжающееся введение препаратов артериальное давление уже через 50 - 90 минут

196

практически нормализуется (Patil et al, 1965). Как известно, в основе действия эфедрина, тирамина и некоторых других адреномиметиков лежит способность усиливать выброс катехоламинов из пресинаптических структур, которые и вызывают возбуждение соответствующих рецепторов. Истощение запасов нейромедиатора, естественно приводит к ослаблению биологического действия препарата, до полного его прекращения. Алкалоид резерпин, повреждая пресинаптические везикулы, в которых депонируются биогенные амины (норадреналин, дофамин, серотонин), истощает их запасы в синапсах. На фоне действия этого вещества толерантность к тирамину, эфедрину и их анологам развивается значительно быстрее. После восстановления в тканях нормального содержания нейромедиаторов, восстанавливается исходная чувствительность организма и к препаратам, истощающим их запасы.

1.3. Тахифилаксия Тахифилаксией называется явление развития толерантности к веществу, вводимому в действующей

дозе, уже после однократного контакта с ним.

Формирование тахифилаксии - дозо-зависимый феномен. В ряде случаев повторное действие токсиканта в малых и даже умеренных дозах не приводит к формированию толерантности. Однако эффект развивается после однократного действия вещества в высокой дозе. Иногда тахифилаксия развивается и на подпороговые дозы веществ (показано для атропина). Тахифилаксия продолжается до полного прекращения биологического действия соответствующего ксенобиотика.

Эффект можно вызвать как на целом животном, так и на изолированных органах. Если в дыхательные пути морских свинок ввести аэрозоль серотонина, быстро развивается бронхоспазм и астмоподобное состояние. Не смотря на продолжающуюся ингаляцию вещества, через некоторое время состояние животных нормализуется, что свидетельствует о формировании толерантности к нему. Введение большой дозы норадреналина также приводит к резкому снижению чувствительности к препарату. При продолжительной инфузии норадреналина его прессорное действие постепенно ослабляется, в итоге восстанавливается исходное значение артериального давления. Более того, прекращение введения катехоламина приводит к развитию выраженной гипотензии. Причину тахифилаксии следует искать в изменении функций многих биологических систем, однако основной, по-видимому, является изменение функционального состояния рецепторного поля сосудистого русла.

На препарате изолированной стенки аорты собаки тахифилаксию можно вызвать в отношении ацетилхолина, гистамина, серотонина, морфина, атропина и т.д. Следовательно, не имеет значение сократительным или расслабляющим действием на препарат обладает вещество. Имеются видовые различия в способности веществ вызывать тахифилаксию. Так, эффект в отношении гистамина не удается вызвать на препарате a. Carotis кролика.

Повторное действие хлористого бария на препарат тонкого кишечника морской свинки в растворе Тироде, свободном от ионов кальция, бытсро приводит к тахифилаксии. Добавление в инкубационную среду Ca2+ сопровождается восстановлением контрактильных свойств препарата. По-видимому, действие бария связано с повышением содержания кальция в цитоплазме миоцитов вследствие высвобождения его из связи с клеточными мембранными структурами. При повторном воздействии пул Ca2+ истощается, что и приводит к тахифилаксии. Добавление кальция в среду восстанавливает содержание кальция в клетках и одновременно сократительные свойства биообъекта.

Еще одной причиной тахифилаксии может быть быстро развивающееся истощение пула нейромедиаторов. Характерным примером является быстро развивающаяся толерантность к симпатомиметикам непрямого действия (эфедрину, амфетамину).

1.4. Хроническая форма толерантности Если толерантность развивается в результате длительного действия ксенобиотика, говорят о

хронической форме. Классическим примером является постепенное снижение чувствительности к наркотическим анальгетикам при их длительном приеме. Например, анальгетическая активность морфина у крыс, определяемая по порогу чувствительности животных к действию электротока, при ежедневном подкожном введении вещества в дозе 10 мг/кг снижается за 25 суток примерно в 5 раз.

При развившейся толерантности к морфину и морфиноподобным веществам организм в состоянии переносить очень высокие дозы вещества. Анальгетическая доза морфина для человека лежит в интервале 0,01 - 0,02 грамма; смертельная доза составляет 0,3 - 0,5 грамм. Морфинист переносит дозу вещества в несколько грамм. Верхний предел переносимости до настоящего времени не установлен.

Толерантность к морфину формируется на клеточном уровне. Поскольку в крови у толерантных животных морфин определяется в количестве, вызывающем тяжелейшую форму интоксикации у контрольных животных, модификация токсикокинетики вещества, как механизм толерантности, вероятно имеют второстепенное значение. Доказана способность ингибиторов синтеза белка (актиномицина, циклогексимида) угнетать процесс формирования толерантности к морфину.

В настоящее время полагают, что действие опиатов на рецепторы мозга приводит к повышению синтеза в ЦНС естественных агонистов рецепторов - энкефалинов, а также постепенному снижению чувствительности рецепторов к агонистам. У крыс, которым длительное время вводили морфин, уровень энкефалинов в мозге был примерно в 2 раза выше, чем у контрольных животных. Имеются данные об участии в развитии толерантности нарушений обмена вторичных месенджеров в нейронах мозга, в частности цАМФ.

Толерантность, развившаяся в отношении одного из наркотических анальгетиков, распространяется и на другие вещества этой группы. Это явление получило название "перекрестной толерантности". Перекрестная толерантность охватывает все препараты с одинаковым механизмом действия (взаимодействие с опиатными рецепторами). Антагонистами всех этих веществ являются препараты близкого строения (N-аллилморфин).

Толерантность, подобная "морфиновой" может развиться и в отношении других веществ, действующих на синаптическую передачу. Так, повторное введение блокаторов дофаминовых рецепторов

197

(нейролептиков) приводит к адаптивным изменениям дофаминергической передачи, которая характеризуется усилением высвобождения дофамина, увеличением числа рецепторов ДА, активацией эффективности реактивных систем. Все эти эффекты являются следствием высокой пластичности механизмов нейротрансмиссии.

1.5. Биологическое значение толерантности Толерантность можно рассматривать как защитную реакцию организма на действие ксенобиотиков, при

которой снижается чувствительность к веществам, и, не редко, лишь в отношении части эффектов, вызываемых токсикантом. Последнее обстоятельство является одной из причин существенных различий в проявлениях острой, подострой и хронической интоксикаций одним и тем же веществом.

2.Химическая зависимость Повторный контакт с химическим веществом может привести к зависимости от него. Наиболее частой

формой зависимости является лекарственная зависимость, наиболее часто развивающаяся в отношении психотропных препаратов.

В соответствии с положением, разработанным ВОЗ в 1964 году, лекарственная зависимость определяется как состояние психической или физической зависимости от некоего вещества, действующего на ЦНС и принимаемого либо непрерывно, либо время от времени. Это определение охватывает, по сути, все биологически активные вещества и, следовательно, такие как алкоголь, табак, наркотики и др.

Нередко говорят о пристрастии, рассматривая этот термин, как синоним зависимости. Тем не менее между понятиями существуют существенные различия. По определению ВОЗ (1957 г.), пристрастие это состояние связанное с периодической или постоянной интоксикацией, произвольно вызываемой потреблением натуральных или синтетических веществ и характеризующееся 4 признаками:

-непреодолимое стремление к потреблению вещества;

-тенденция к постепенному увеличению вводимой дозы;

-психическая или физическая зависимость от токсиканта;

-опасность как для отдельного лица, так и для общества.

Таким образом, зависимость является лишь одним из неотъемлемых атрибутов пристрастия. В настоящее время предлагается выделять 6 основных типов химического пристрастия:

1.Морфиновый тип: сильная психическая и физическая зависимость с постепенным развитием толерантности.

2.Барбитурат-алкогольный тип: выраженная психическая и физическая зависимость с развитием толерантности.

3.Кокаиновый тип: сильная психическая зависимость, при отсутствии физической зависимость; толерантность развивается только в условиях эксперимента.

4.Канабиноловый тип: выраженная психическая зависимость при отсутствии или слабо выраженной физической зависимости; отсутствие толерантности.

5.Галюциногенный тип (ДЛК-тип): выраженная, до сильной, психическая зависимость; отсутствие физической зависимости; значимая толерантность.

6.Амфетаминовый тип: значимая, но индивидуально по-разному проявляющаяся психическая зависимость, при отсутствии физической зависимости; сильная толерантность.

2.1. Психическая зависимость Психическая зависимость - центральный признак химической зависимости, развивающийся при всех её

формах. Она характеризуется непреодолимым стремлением к продолжению, сделавшегося привычкой, потребления вещества. Психические проявления синдрома отмены состоят в появлении страха, беспокойства, депрессии вплоть до суицидных попыток, стремлении к поиску веществ. Как указывалось ранее, психическая зависимость не всегда связана с физической зависимостью и развитием толерантности.

2.2. Физическая зависимость Физическая или соматическая зависимость от вещества связана со структурно-функциональными

изменениями ЦНС, которые при внезапной отмене препарата проявляются в форме синдрома отмены или абстиненции. Симптомы абстинентного синдрома подразделяют на вегетативные и невегетативные. К первой группе относятся: диарея, непроизвольное мочеиспускание, озноб, слюнотечение, миоз (иногда мидриаз), экзофтальм, слезотечение, тахипное, тошнота, рвота. Ко второй группе симптомов относятся: беспокойство, тремор, раздражительность, мио- и невралгии (наиболее выражены у морфинистов).

Физическая зависимость может развиваться не только у человека. Это явление достаточно глубоко изучается и на экспериментальных животных. В основе опытов лежит методика оценки самовведения препаратов. Предварительно канюлированное животное путем нажатия на рычаг может ввести себе определенную дозу вещества. Если вещество вызывает у животного позитивную реакцию, отмечается его постоянное самовведение. Перечень соединений, вызывающих у человека зависимость, хорошо совпадает с перечнем препаратов, позитивно стимулирующих животных. Степень точности, с которой можно выявит физическую зависимость у лабораторного животного - высока. При самовведении слабого раствора героина наблюдается его постоянное потребление путем частого нажатия на рычаг. Если концентрацию раствора увеличить, частота нажатия на рычаг уменьшается. Однако развивающаяся зависимость от препарата на столько велика, что со временем животное пробуждается ото сна только для того, чтобы в очередной раз ввести себе наркотик. Если раствор героина заменить на физиологический раствор, частота нажатия на рычаг становится очень высокой, появляются признаки синдрома отмены, устраняемые введением героина.

Характерными признаками физической зависимости являются:

-повторное введение вещества в течение нескольких недель;

-обязательное сочетание с развитием толерантности;

-как правило, сопровождается выраженной психической зависимостью;

-проявления токсического действия вещества противоположны симптомам абстинентного синдрома;

198

-отсутствие обязательной связи между перекрестной толерантностью и перекрестной физической зависимостью к препаратам разных групп;

-максимальная интенсивность проявлений абстинетного синдрома в первые четверо суток после отмены, с прекращением симптоматики через 1 - 2 недели.

2.3 Механизм химической зависимости В настоящее время механизмы формирования химической зависимости изучены не достаточно. На

основе многочисленных клинических и экспериментальных исследований установлено, что в основе явления, как правило, лежат структурно-функциональные изменения различных образований головного мозга, носящие адаптивный характер к длительному поступлению токсиканта в организм и проявляющиеся нарушениями их реактивности в отношении эндогенных биорегуляторов. Особое значение в этой связи придают системе вознаграждения ЦНС (reward-system) и связанным с ней нейромедиаторным механизмам.

Кхимической зависимости приводит применение веществ, прямо или косвенно действующих на систему вознаграждения и вызывающих тем самым состояние удовлетворения, эйфории, успокоения (по меньшей мере, напоминающее опьянение), что и заставляет прибегать к их приёму. К числу нейромедиаторных механизмов, имеющих значение в формировании зависимости, в настоящее время, прежде всего, относя моноаминергические (дофаминергические, серотонинергические) и систему энкефалинов. Вещества, действующие на эти системы мозга, например, морфин, фенилалкиламины, кокаин и т.д., известны своей опасностью в плане формирования химической зависимости. Длительное использование антагонистов этих систем (нейролептиков, налорфина) не приводит к развитию зависимости.

В качестве нейробиологических механизмов развития химической зависимости рассматриваются следующие:

1.Вещество-агонист рецептора (фенамин, наркотический анальгетик и др.) угнетают высвобождение

нейромедитора с одновременным уменьшением числа возбуждаемых рецепторов или изменением их функциональных свойств. Эти изменения более продолжительны, чем время действия агониста, поэтому в случае невведения вещества тонус нейромедиаторной системы понижается, что сопровождается развитием абстинетного синдрома.

2.Токсикант повышает выброс нейромедиатора из пресинаптических структур (например, усиление выделения дофамина при действии амфетамина), или блокирует его обратный захват (кокаин). В итоге запасы нейромедиатора, при длительном введении, истощаются. Отмена препарата приводит к выраженному дефициту трансмиттера, гипофункции медиаторной системы, что и сопровождается развитием абстиненции.

3.Препарат сенсибилизирует рецептор к действию нейромедитора. Развивающиеся при этом адаптивные процессы более продолжительны, чем действие вещества. В итоге прекращение введения вещества сопровождается гипофункцией нейромедиаторной системы с развитием синдрома отмены (бензодиазепины).

4.Вещества вызывают стойкие адаптивные изменения физико-химических свойств биологических мембран и, вследствие этого, нарушение их возбудимости. Отмена препаратов приводит к развитию абстиненции (спирты, органические растворители - алкоголизм, токсикомании).

Рассмотренные механизмы хотя и являются экспериментально доказанными в различных моделях, тем не менее представляют собой существенное упрощение проблемы. Ни в коем случае нейробиологические основы зависимости нельзя рассматривать в отрыве от сложных психофизиологических и психосоциальных факторов, особенностей структуры личности пациента.

3.Привыкание Толерантность, пристрастие, зависимость к токсиканту не следует смешивать с явлением привыкания к

веществу. ВОЗ определяет привыкание как стремление к приему вещества без отчетливой тенденции к развитию толерантности и физической зависимости. Формирование психической зависимости - возможная, но не обязательная характеристика явления. Наиболее часто люди привыкают к использованию лекарств. Так, есть лица, способные заснуть только после приема таблеток, даже если это плацебо. Привычка может быть прервана простым волевым усилием, без развития серьезных осложнений. Однако возможна трансформация привычки в психическую зависимость от вещества.

4.Хроническое отравление Хроническим называется отравление, развивающееся в результате длительного воздействия

токсиканта, как правило, в дозах, не вызывающих проявлений токсического процесса при однократном поступлении в организм. Весь перечень эффектов и механизмов, рассмотренных выше, может быть элементом хронической интоксикации, но далеко не исчерпывается им. В каждом случае воздействия конкретного вещества механизмы хронического отравления достаточно специфичны. Однако все они могут быть отнесены к одной из групп:

1.Токсикокинетические;

2.Токсикодинамические.

В основе токсикокинетических механизмов развития хронической интоксикации лежат процессы, приводящие к накоплению (материальная кумуляция) веществ в органах-мишенях до некоего критического уровня, достаточного для инициации патологии (тяжелые металлы, полициклические ароматические углеводороды, полигалогенированные углеводороды и т.д. - вещества с длительным периодом полуэлиминации).

Токсикодинамические механизмы представляют собой совокупность постепенного накопления и накопления многочисленных сохраняющихся во времени микронарушений со стороны биологических систем организма, развивающихся вследствие повторного воздействия токсиканта в подпороговых дозах (функциональная кумуляйция), и изменения реактивности биосистем в отношении токсикантов (см. выше) (ядовитые газы, ФОС, цианиды и т.д. - вещества с коротким периодом полуэлиминации).

199

В основе хронического отравления подавляющим большинством токсикантов лежат механизмы обеих групп.

200

ГЛАВА 5.4. КОЕРГИЗМ КСЕНОБИОТИКОВ В реальных условия биологические системы, как правило, подвергаются воздействию более чем одного

вещества. При этом большинство соединений (действуя в достаточной дозе) таким образом изменяют состояние организма, что последующий контакт с другими ксенобиотиками приводит к формированию эффектов качественно и количественно отличающихся, от вызываемых ими у интактных организмов, т.е. вызывают аллобиотические состояния. Например, уже однократный прием хлорорганического инсектицида алдрина мышами приводит к существенному изменению их чувствительности к фосфорорганическим инсектицидам (таблица 1).

Таблица 1. Влияние алдрина (16 мг/кг, однократно через рот, за 4 суток до испытания) на чувствительность белых мышей к некоторым ФОС

Вещество

Смертность в группе (%)

(мг/кг)

Контроль

После потребления алдрина

Паратион (22)

35

0

Параоксон (40)

100

44,4

ТЭПФ (10)

95

0

ДФФ (50)

66,6

10

Гутион (15)

84,6

15,4

ТОКФ (2000)

60

20

ОМФА (25)

60

70

(A.J. Triolo, J.M. Coon, 1966)

Для обозначения всех форм эффектов, развивающихся при совместном действии химических веществ, не зависимо от их строения и вида подвергающейся воздействию биологической системы, используют термин - коергизм. Проявления коергизма возможно как вследствие одномоментного (комбинация), так и последовательного (сукцессия) действия веществ на организм (рисунок 1).

Рисунок 1. Коергизм при одномоментном и последовательном поступлении веществ "А" и "В" в организм.

Проявления коергизма по показателям качества и интенсивность развивающихся эффектов можно представить в форме трех основных типов: аддитивный синергизм (суммация), потенцирующий синергизм (потенцирование), антагонизм (таблица 2).

Таблица 2. Виды коергизма

Аддитивный

синергизм

Потенцирующий

синергизм

Антагонизм

Совместный эффект А и В равен сумме эффектов каждого из веществ. Вещества имеют либо близкую структуру, либо одинаковый механизм действия

Совместный эффект А и В больше суммы эффектов каждого из веществ. Вещества имеют различные механизмы действия. Возможно действие одного из веществ, как аллостерического активатора рецептора другого вещества

Совместный эффект А и В существенно ниже суммы эффектов каждого из веществ вплоть до полного устранения эффектов

1. Механизмы коергизма Взаимное влияние химических веществ на развивающиеся эффекты может осуществляться во все

периоды их действия и даже после выведения одного из них из организма. 1.1. Взаимодействие в период аппликации

В ряде случаев взаимодействие веществ происходит уже в период их аппликации, при этом образуются продукты с иными свойствами. Этот вариант взаимодействия называется псевдокоергизм. Наибольшее внимание с точки зрения токсикологии заслуживают такие явления как адсорбционное связывание

Соседние файлы в папке военная мед фотки и методички