Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 курс / Системы технологий-2012.doc
Скачиваний:
30
Добавлен:
07.02.2016
Размер:
475.65 Кб
Скачать

10.2 Испытание металлов, сплавов.

Металлы и сплавы подвергают испытаниям на прочность и твердость. Под прочностью понимают сопротивление разрушению под действием внешних сил. Ее определяют по статическим испытаниям на растяжение. Прочность характеризуют пределом прочности Qв, то есть временным сопротивлением на разрыв. Тогда:

Поскольку начальная длина образца при испытаниях на растяжение увеличивается до 1К, — =ст - относительное удлинение, %.

По нему оценивают пластичность образца.

Показателем пластичности является и относительное укорочение материала при сжатии:

где h0 .hx- начальные и конечные высоты образца.

Твердостью называют способность металла, сплава сопротивляться вдавливанию в него другого, более твердого вещества. Твердость измеряют по Бринеллю в НБ (вдавливанием в образцы закаленного стального шарика); Роквеллу в HRC, HRA (алмазным конусом); Виккерсу в HV (алмазной пирамидой).

Если действующую на образец силу устранить и в нем не обнаруживается остаточная деформация, то такую деформацию называют упругой деформацией. Важной характеристикой упругих свойств металлов является модуль упругости, который рассматривают как меру прочности связей между атомами в твердом теле. Модуль упругости (Ј) кристаллических тел зависит от расстояния между атомами в соответствующих направлениях кристаллической решетки.

Практическое значение имеет изменение структуры, свойств металлов, сплавов в процессе пластической деформации.

При горячей деформации добиваются, чтобы расположение волокон в металле совпадало с направлением основных усилий при работе.

Упрочнение металла при холодной пластической деформации называют наклепом. Наклеп сопровождается изменением коррозионной стойкости, ростом электросопротивления. Вместе с тем при холодной деформации беспорядочно ориентированные кристаллы поворачиваются осями наибольшей прочности вдоль направления деформации, что и обеспечивает высокую прочность.

Тема 11. Электрохимические процессы План

11.1.Характеристика электрохимических процессов.

11.2.Закономерности электрохимических процессов.

11.1.Характеристика электрохимических процессов

Электрохимические процессы основаны на непосредственном переходе электрической энергии в химическую без промежуточного превращения энергии в теплоту.

Широкое распространение электрохимические процессы получили после изобретения динамо-машины в 1870 г. Сначала возникли заводы для рафинирования, а затем по производству продуктов электролиза.

Основные задачи электрохимических технологий следующие:

  • получение, рафинирование цветных и благородных металлов;

  • получение щелочных, щелочноземельных и других легких металлов;

  • получение металлических сплавов;

  • получение хлора, щелочей, кислорода, водорода;

  • получение неорганических солей, окислителей;

  • защита металлов от коррозии;

  • декоративные, специальные покрытия;

  • гальванопластическое изготовление копий;

  • получение химических источников тока.

В последние десятилетия область применения электрохимических процессов расширилась. Их применяют в машиностроении, для синтеза органических веществ, получения редких металлов, в радиоэлектронике.

По сравнению с химическими методами электрохимические имеют ряд преимуществ. Прежде всего, с их помощью по простым технологическим схемам получают чистые продукты. Использование электрической энергии упростило технологию получения веществ, например, производства легких металлов (алюминия, натрия, магния), причем удается получать ценные побочные продукты.

Недостатки электрохимических процессов состоят в применении энергии постоянного тока, в наличии затрат на создание источников постоянного тока.