
- •Version 3.1.0 (2014-04-10)
- •1.Введение и предварительные замечания 8
- •6.Списки и фреймы данных 37
- •11.Статистические модели в r 64
- •12.Графические процедуры 78
- •13.Пакеты 97
- •Предисловие
- •Предложения читателю
- •О переводе
- •Введение и предварительные замечания
- •Среда r
- •Связанное программное обеспечение и документация
- •R и статистика
- •R и оконная система
- •Использование r в интерактивном режиме
- •Первый сеанс
- •Получение справки по функциям и средствам
- •Команды r,учет регистра и т.Д.
- •Повтор и коррекция предыдущих команд
- •Выполнение команд из файла или перенаправление вывода в файл
- •Сохранение данных и удаление объектов
- •Простые манипуляции; числа и векторы
- •Вектора и присваивания
- •Векторная арифметика
- •Генерация регулярных последовательностей
- •Логические векторы
- •Пропущенные значения
- •Векторы символов
- •Векторы индексов; выбор и изменение подмножеств наборов данных
- •Другие типы объектов
- •Объекты, их режимы и атрибуты
- •Внутренние атрибуты: режим и длина
- •Изменяющаяся длина объекта
- •Получение и установка атрибутов
- •Класс объекта
- •Упорядоченные и неупорядоченные факторы
- •Специальный пример
- •Функция tapply () и массивы с переменной длиной строк
- •Упорядоченные факторы
- •Массивы и матрицы
- •Массивы
- •Индексация массива. Подразделы массива
- •Индекс матрицы
- •Функция array()
- •Смешанный вектор и арифметика массива. Правило рециркуляции
- •Внешнее произведение двух массивов
- •Обобщенное транспонирование массива
- •Матричные инструменты
- •Умножение матриц
- •Линейные уравнения и инверсия
- •Собственные значения и собственные векторы
- •Сингулярное разложение и определители
- •Подгонка методом наименьших квадратов и qr разложение
- •Формирование разделенных матриц cbind () и rbind ()
- •Функция связывания массивовc()
- •Таблицы частот от факторов
- •Списки и фреймы данных
- •Построение и изменение списков
- •Конкатенация списков
- •Фреймы данных
- •Создание фреймов данных
- •Attach() и detach()
- •Работа с фреймами данных
- •Присоединение произвольных списков
- •Управление путем поиска
- •Чтение данных из файлов
- •Функция read.Table()
- •Функция scan()
- •Доступ к встроенным наборам данных
- •Загрузка данных из других пакетов r
- •Редактирование данных
- •Распределение вероятности
- •R как ряд статистических таблиц
- •Исследование распределения набора данных
- •Тесты на одной и двух выборках
- •Группировка, циклы и условное выполнение
- •Группирующие выражения
- •Проверка утверждения
- •Условное выполнение: операторы if
- •Повторное выполнение: for, loops, repeat и while
- •Написание собственных функций
- •Простые примеры
- •Определение новых бинарных операторов
- •Именованные параметры и умолчания
- •Параметр ‘...’
- •Присвоения в пределах функций
- •Более сложные примеры
- •Фактор эффективности при проектировании блоков
- •Отбрасывание всех имен при печатании массива
- •Рекурсивное числовое интегрирование
- •Область действия
- •Настройка окружения
- •Классы, универсальные функции и объектно-ориентированное программирование
- •Статистические модели в r
- •Определение статистических моделей; формулы
- •Примеры
- •Противопоставления
- •Линейные модели
- •Универсальные функции для извлечения информации о модели
- •Дисперсионный анализ и сравнение модели
- •Таблицы anova
- •Обновление подогнанных моделей
- •Обобщенные линейные модели
- •Семейства
- •Функция glm()
- •Нелинейные наименьшие квадраты и модели наибольшего правдоподобия
- •Наименьшие квадраты
- •Метод максимального правдоподобия
- •Некоторые нестандартные модели
- •Графические процедуры
- •Высокоуровневые команды рисования
- •Функция plot()
- •Отображение многомерных данных
- •Графический вывод
- •Параметры для высокоуровневых графических функций
- •Низкоуровневые команды рисования
- •Математическая аннотация
- •Векторные шрифты Херши
- •Интерактивная графика
- •Использование графических параметров
- •Постоянные изменения: функция par()
- •Временные изменения: параметры для графических функций
- •Список графических параметров
- •Графические элементы
- •Оси и метки
- •Поля рисунка
- •Окружение составных фигур
- •Устройства вывода
- •PostScript диаграммы для типографии
- •Несколько графических устройств одновременно
- •Динамическая графика
- •Стандартные пакеты
- •Сторонние пакеты и cran
- •Пространства имен
- •Пакеты для анализа временных рядов
- •Основные пакеты - Basics
- •Время и даты -Times and Dates
- •Классы временных рядов - Time Series Classes
- •Прогноз и одномерное моделирование -Forecasting and Univariate Modeling
- •Ресэмплирование - Resampling
- •Декомпозиция и фильтрация - Decomposition and Filtering
- •Стационарность, единичный корень и коинтеграция - Stationarity, Unit Roots, and Cointegration
- •Нелинейный анализ временных рядов -Nonlinear Time Series Analysis
- •Модели динамических регрессий - Dynamic Regression Models
- •Модели многомерных временных рядов - Multivariate Time Series Models
- •Модели непрерывного времени - Continuous time models
- •Исходные временные ряды - Time Series Data
- •Разное - Miscellaneous
- •Перечень пакетов для анализа временных рядов:
- •• Aer • afmtools • bayesGarch
- •Приложение a. Примерный сеанс
- •Приложения b. Вызов r
- •В.1. Вызов r из командной строки
- •В.2. Вызов r под Windows
- •В.3. Вызов r под os X
- •В.4. Скрипты r
- •Приложение c. Редактор командной строки
- •Приложение f. Ссылки
Исследование распределения набора данных
Для данного (одномерного) набора данных можно исследовать его распределение большим количеством способов. Самое простое исследовать числа. Две немного отличающихся сводки даны summaryиfivenumи показывает числа с помощьюstem(рисунок “основа и лист”).
> attach(faithful)
> summary(eruptions)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.600 2.163 4.000 3.488 4.454 5.100
> fivenum(eruptions)
[1] 1.6000 2.1585 4.0000 4.4585 5.1000
> stem(eruptions)
Десятичная точка находится на 1 разряде слева от |: 16 | 070355555588
18 | 000022233333335577777777888822335777888
20 | 00002223378800035778
22 | 0002335578023578
24 | 00228
26 | 23
28 | 080
30 | 7
32 | 2337
34 | 250077
36 | 0000823577
38 | 2333335582225577
40 | 0000003357788888002233555577778
42 | 03335555778800233333555577778
44 | 02222335557780000000023333357778888
46 | 0000233357700000023578
48 | 00000022335800333
50 | 0370
Рисунок основы-и-листа походит на гистограмму, и у R есть функцияhistк гистограммам рисунка.
> hist(eruptions)
## make the bins smaller, make a plot of density
> hist(eruptions, seq(1.6, 5.2, 0.2), prob=TRUE)
> lines(density(eruptions, bw=0.1))
> rug(eruptions) # show the actual data points
Более изящные рисунки плотности могут быть сделаны с помощью density, и мы прибавили линию, продолженную плотностью в этом примере. Ширина полосы частот пропускной способности была выбрана эмпирическим, поскольку по умолчанию дает слишком много сглаживания (это обычно делает для "интересной" плотности). (Лучше автоматизированные методы выбора пропускной способности доступны, и в этой ширине полосы частот в качестве примера =, "SJ" дает хороший результат.)
Можно нарисовать эмпирическую кумулятивную функцию распределения путем использования функции ecdf.
> plot(ecdf(eruptions), do.points=FALSE, verticals=TRUE)
Это распределение очевидно далеко от любого стандартного распределения. Как о правом режиме, скажите прерывание дольше, чем 3 минуты? Давайте подгоним к нормальному распределению и наложим подогнанную CDF.
> long <- eruptions[eruptions > 3]
> plot(ecdf(long), do.points=FALSE, verticals=TRUE)
> x <- seq(3, 5.4, 0.01)
> lines(x, pnorm(x, mean=mean(long), sd=sqrt(var(long))), lty=3)
Рисунок квантиль-квантиль (Q-Q) может помочь нам проверить это более тщательно: par(pty="s") # arrange for a square figure region qqnorm(long); qqline(long)
которые показывают разумную подгонку, но более короткий правый хвост, чем можно было бы ожидать от нормального распределения. Давайте сравним его с некоторыми имитируемыми данными от tраспределения:
x <- rt(250, df = 5) qqnorm(x); qqline(x)
который обычно (если это будет случайная выборка) покажет более длинные хвосты, чем ожидается для нормального распределения. Мы можем сделать рисунок Q-Q против распределения генерации путем: qqplot(qt(ppoints(250), df = 5), x, xlab = "Q-Q plot for t dsn") qqline(x)
Наконец, можно провести более формальный тест согласования с нормальным распределением (или нет) R предоставляет тест Шапиро_Уилка:
> shapiro.test(long) Shapiro-Wilk normality test data: long
W = 0.9793, p-value = 0.01052
И тест Колмогора-Смирнова:
> ks.test(long, "pnorm", mean = mean(long), sd = sqrt(var(long)))
One-sample Kolmogorov-Smirnov test
data: long
D = 0.0661, p-value = 0.4284 alternative hypothesis: two.sided
(Заметим, что теория распределения не допустима здесь, поскольку мы оценили параметры нормального распределения от той же самой выборки.)