Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
глава 1.doc
Скачиваний:
11
Добавлен:
12.06.2015
Размер:
1.41 Mб
Скачать

1.2. Limk1 как ключевой фермент ремоделирования актина.

Ген limk1 является высококонсервативным и обнаружен в геноме различных организмов, таких как Anopheles gambia, Xenopus laevis, Danio rerio, Gallul gallus, Mus musculus, Homo sapiens и многих других (Stanyon, Bernard, 1999; Scott, Olson, 2007).

С гена limk1 считывается три сплайс-варианта киназ: LIMK1, LIMK2, TESK (testis specific kinase). Они являются киназами с двойственной специфичностью к серин/треонину и тирозину (Manetti, 2012). Фермент LIMK1 - нейроспецифический, и аккумулируется в области синапсов (Foletta et al., 2004). У D. melanogaster LIMК1 выявляется в нодулях и эллипсоидном теле ЦК и в зрительных долях головного мозга (Савватеева-Попова и др., 2004). LIMK2 сосредоточена в районе эндосом (Acevedo et al., 2006).

Наибольшее значение имеет фермент LIMK1, который регулирует организацию актинового цитоскелета путем инактивации фосфорилирования актина и деполяризации белка кофилина. LIMK1 фосфорилирует кофилин в положении серина, который препятствует деполимеризации актина и приводит к накоплению F-актина. LIMK1 также регулирует стабильность микротрубочек путем фосфорилирования p25/TPPP (белка полимеризации тубулина), который дестабилизирует микротрубочки. Активированный белок LIMK1 ассоциируется с гамма-тубулином в центросоме в течение митотического цикла (рис. 3) (Gorovoy et al., 2005).

Рис. 3. Участие LIMK1 в процессах дестабилизации микротрубочек и формирования стрессорных фибрилл (по: Gorovoy et al., 2005).

LIMK1 - многофункциональный белок, который участвует в регуляции клеточной подвижности, клеточного цикла, цитокинеза и клеточной морфологии. LIMK1 также регулирует рост нейритов, синаптическую стабильность, подвижность конуса роста, формирование аксонов путем модуляции динамики комплекса Гольджи и нейрональную дифференцировку.

В состав белка LIMK1 входят два LIM-домена (LIM – аббревиатура от продуктов генов, где эти домены были впервые обнаружены: Lin-11, Isl-1 и Mec-3), каждый из которых содержит два мотива цинковых пальцев; один PDZ-домен (PDZ – аббревиатура от названий трех белков: PSD95, DLG, ZO-1); домен SMC-pork A (SMC - structural maintenance of chromosomes, домен для поддержания структуры хромосом) и киназный домен.

В состав белка LIMK1 входят два LIM-домена, которые обеспечивают белок-белковые взаимодействия (Nagata et al., 1999). LIMK1 содержит два мотива цинковых пальцев и один PDZ-домен (PDZ – аббревиатура от названий трех белков: PSD-95, DLG, ZO-1), также домен SMC-pork A (SMC - structural maintenance of chromosomes, домен для поддержания структуры хромосом) и еще киназный домен. Убрать повторы. Белки, содержащие PDZ-домен, являются ключевыми молекулами в организации постсинаптической области в нейромышечных контактах (Rivlin et al., 2004). PDZ–домены необходимы для образования супрамолекулярных комплексов сигнальной трансдукции и организации ядерно-цитоплазматического транспорта (Gorovoy et al., 2005). Домен SMC-pork A аналогичен белку SMC-pork A. Этот белок обеспечивает поддержание структуры хромосом при сегрегации в ходе клеточного деления.

LIMK1 в клетке представлена пятью изоформами – А, С, D, F и E. С и D - наиболее значимые из этих пяти изоформ и различаются по функциональной активности (Рисунок 4).

Рис. 4. Доменная структура изоформ LIMK1 D. melanogaster: а – изоформа С, б – изоформа D (по: the National Centre for Biotechnology Information (NCBI), www.ncbi.nlm.nih.gov).

C-изоформа - полноразмерный белок длиной 1257 аминокислот, содержащий два LIM и один PDZ домена, киназный домен и домен SMC-pork A. D-изоформа примерно на 200 аминокислотных остатков короче, чем форма С, за счет отсутствия LIM- и PDZ-доменов и поэтому обладает более высокой киназной активностью (Edwards, Sanders et al., 1999), поскольку LIM- и PDZ-домены ингибируют киназный домен (Nagata et al., 1999).

LIMK1 принимает участие в регуляции внутриклеточного транспорта белков к аппарату Гольджи, стимулируя специализированную организацию актиновых филаментов (Rosso et al., 2004; Salvarezza et al., 2009). Транспорт LIMK1 в ядро осуществляется за счет взаимодействия сигнала ядерной локализации, который находится между PDZ и киназным доменами. Оказавшись в ядре, LIMK1 фосфорилирует транскрипционный фактор CREB, тем самым, вызывая активацию CREB-зависимых промоторов генов, таких как c-fos, zif/268, somatostatin и bdnf. (Yang et al., 2004).

LIMK1 в ядре выполняет двоякую функцию: во-первых, участвует в динамике внутриядерного актина (Krauss et al., 2003), находящегося в ядре в форме связанных с кофилином олигомеров (Pendleton et al., 2003); во-вторых, мишенью LIMK1 могут быть транскрипционные факторы CREB и Nurr1 (Scott, Olson, 2007).

LIMK1 является частью сигнального каскада: рецепторы - малые ГТФазы - актиновый цитоскелет. В финальном звене этого каскада очень важны взаимодействия актинового цитоскелета. И тут важную роль играют трансмембранные белки, они взаимодействуют как с внеклеточными молекулами, так и с внутриклеточными белками цитоскелета. Одним из таких важных семейств белков являются интегрины. Интегрины - обширное суперсемейство рецепторов клеточной поверхности. Они гомологичны для молекул межклеточного матрикса, таких как коллаген, фибронектин (рис. 5).

Рис. 5. Взаимодействие интегринов с актиновыми белками цитоскелета и межклеточным матриксом (по: Campbell, Reece, 2002).

Интегрины участвуют в передаче информации из внеклеточной среды в клетку, определяя таким образом направление её дифференцировки, форму, митотическую активность, способность к миграции (Северина, 2003).

Благодаря трансмембранной ориентации интегрины переносят сигналы от внеклеточного матрикса к цитоскелету. Большинство интегринов связано с цитоплазматическими С-концевыми участками с актин-связывающими белками клеток. При соединении лиганда β-субъединицы связывающихся интегринов взаимодействуют с белками «прикрепления» - талином и α-актинином, которые, в свою очередь, инициируют сборку других соединительных белков. Таким образом, происходит связывание интегринов с актиновыми филаментами (рис. 6).

Рис. 6. Связывание интегринов с актиновыми филаментами (по: Freeman, 2005).

Актиновые филаменты через интегрины могут изменять ориентацию секретируемых молекул фибронектина во внеклеточном матриксе (Вавилова, 2008).

В свою очередь, LIMK1 координирует разборку микротрубочек и полимеризацию актиновых филаментов. Ремоделирование актинового цитоскелета тесно связано с динамикой микротрубочек. Микротрубочки определяют не только внутриклеточную локализацию органелл и их перемещение в цитоплазме в процессе функционирования, но и являются компонентами сигнальной трансдукции (Gundersen, Cook, 2005). Агенты, разрушающие микротрубочки, стимулируют быструю сборку актиновых филаментов и фокальную адгезию.

Динамика микротрубочек регулируется двумя группами белков: стабилизирующие (microtubule-associated proteins MAPs и tau) и дестабилизирующие (stathmin и SCG10 (superior cervical ganglia 10)). Кроме прямого участия LIMK1 в реорганизации микротрубочек, возможно и ее опосредованное действие через фосфорилирование этих белков. Таким образом, LIMK1 опосредует стрессорную реакцию клетки, что выражается в появлении стресс-фибрилл, деассоциации микротрубочек и изменении морфологии клетки (Gorovoy et al., 2005).

Поскольку LIMK1 является ключевым ферментом ремоделирования актина, то изменения функционирования LIMK1 вызывают нарушения как антероградного, так и ретроградного транспорта в нейронах, что, возможно, затрудняет процесс консолидации стимулов при обучении и формировании памяти и, как следствие, приводит к развитию нейродегенеративных заболеваний – кофилинопатий.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]