- •Глава 1 Биологические основы психики
- •Мозг и психические процессы
- •Краткое описание строения нервной системы
- •Клетки мозга
- •Нейроны
- •21 Глия
- •Передача информации в цнс
- •Синаптическая передача информации
- •Медиаторы
- •Функции нейрона
- •Типы нервных волокон
- •Глава 2 Методы получения психофизиологической информации
- •Регистрация психофизиологических параметров
- •Электроэнцефалограмма и методы ее регистрации
- •Регистрация импульсной активности нервных клеток
- •Регистрация вызванных потенциалов мозга человека и потенциалов, связанных с событиями
- •Оценка локального кровотока мозга
- •Томографические методы
- •Компьютерная томография
- •Позитронно-эмиссионная томография (пэт)
- •Визуализация строения мозга с помощью метода ядерно-магнитного резонанса
- •Реоэнцефалография
- •Электромиография
- •Электроокулография
- •Кожно -гальваническая реакция
- •Ассоциативный эксперимент как инструмент анализа психических явлений
- •Глава 3 Психофизиологические механизмы адаптивного поведения
- •Определение адаптации
- •Общий адаптационный синдром
- •Стадии развития стресса
- •Особенности острого и хронического стресса
- •Индивидуальные особенности реагирования людей на стресс
- •Выученная беспомощность
- •Эмоциональной информации
- •Механизмы иммунодепрессии, обусловленной стрессом
- •Центральная регуляция стрессовых реакций
- •Центральные механизмы адаптации
- •Роль функциональной асимметрии мозга в процессе адаптации
- •Срыв процесса адаптации и незавершенная адаптация
- •Психофизиология труда, связанная с постоянными процессами адаптации
- •Глава 4 Функциональная асимметрия мозга
- •Типы асимметрий
- •История исследований функциональной асимметрии мозга
- •Морфологическая асимметрия полушарий мозга
- •Биохимия и асимметрия полушарий головного мозга
- •Клинические данные о функциональной неравнозначности полушарий
- •Методы исследования функциональной асимметрии мозга
- •Исследования функциональной специализации полушарий мозга в норме
- •Специализация левого и правого полушарий
- •Совместная деятельность полушарий мозга
- •Леворукость и праворукость
- •Происхождение леворукости
- •Обучение и специализация полушарий
- •Рукость и функциональная асимметрия мозга
- •Возрастные особенности становления рукости
- •Глава 5 Психофизиология восприятия
- •Организация систем восприятия
- •Сенсорные системы
- •126 Зрительное восприятие
- •Сетчатка и ее функции
- •132 Передача информации из глаза в мозг
- •Анализ зрительной информации
- •Стабилизация изображения на сетчатке
- •Константность восприятия
- •Видеоэкология и агрессивная городская среда
- •Глава 6 Психофизиология восприятия (продолжение)
- •Анатомия среднего и внутреннего уха
- •Центральная часть слухового анализатора
- •Восприятие высоты тона
- •158 Локализация источника звука
- •Костная проводимость
- •Вестибулярный аппарат
- •Вестибулярная система
- •Передача информации в центральную нервную систему
- •162 Вкусовое восприятие
- •Вкусовые стимулы
- •Рецепторы вкуса
- •Проводящая система вкусовых ощущений
- •. Обонятельное восприятие
- •Вещества, вызывающие запах
- •Структура обонятельной системы
- •Соматосенсорная и висцеральная системы
- •Строение кожи и ее рецепторов
- •Восприятие температуры
- •Болевая (ноцицептивная) чувствительность
- •Пути передачи соматосенсорной информации в мозг
- •Глава 7 Психофизиология движения
- •179 Строение и функции мышечного аппарата
- •Рефлекторный контроль движения
- •Моносинаптический рефлекс
- •Полисинаптический рефлекс
- •Нервные пути, участвующие в реализации двигательной активности
- •Роль базальных ганглиев в регуляции движения
- •Роль мозжечка и ретикулярной формации в управлении движением
- •Роль лобной и теменной коры мозга в управлении движением
- •Иерархичность управления движением
- •Соотношение произвольной и непроизвольной регуляции движений
- •Глава 8 Психофизиология бодрствования
- •Состояние бодрствования
- •Цикл сон — бодрствование
- •Уровни активации и эффективность психических процессов
- •204 Роль ретикулярной формации среднего мозга в формировании состояния бодрствования
- •Роль других структур в регуляции бодрствования
- •Использование теории хаоса для описания состояния человека
- •Глава 9 Психофизиология сна
- •Сон как особое состояние сознания
- •Стадии медленного сна
- •Парадоксальный сон
- •Позы спящих людей
- •Нейронные структуры, ответственные за развитие стадий сна
- •Периодичность стадий сна
- •Влияние состояния человека на рисунок сна
- •Память и сон
- •Возрастные особенности сна Депривация сна
- •Особенности сна у животных
- •Гипотезы, объясняющие причины сна
- •Нарушения сна
- •Глава 10 Психофизиология внимания
- •Определение внимания и его виды
- •Модель внимания Бродбента и ее экспериментальная проверка
- •Внимание и функциональное состояние мозга
- •Структуры мозга, включенные в регуляцию потока сигналов
- •Роль левого и правого полушарий мозга в процессе внимания
- •Внимание и ориентировочный рефлекс
- •Нервная модель стимула
- •Глава 11 Психофизиология неосознаваемых процессов
- •Неосознаваемые содержания психики
- •Требования к исследованию неосознаваемых психических явлений
- •253 Неоднозначность осознанного отчета и неосознанного ответа при восприятии эмоциональной информации
- •Перцептивная гипотеза
- •Выявление перцептивной защиты
- •Выработка условных рефлексов на неосознаваемом уровне
- •Прайминг
- •Психофизиология восприятия эмоциональных слов
- •262 Психофизиология бессознательного
- •Глава 12 Психофизиология осознанных процессов
- •Зрительное осознание
- •Локализация сознания
- •Роль речи в осознании
- •Функциональная асимметрия и сознание
- •Сознание как информационный синтез
- •Иерархическая модель гештальта
- •Глава 13 Психофизиология эмоций
- •Врожденность эмоциональной экспрессии
- •Соответствие физиологических изменений психологическим переживаниям
- •Механизмы возникновения эмоций
- •Эмоции и функциональная асимметрия мозга
- •Информационная теория эмоций
- •Нейрональная основа эмоциональной коммуникации
- •Агрессия
- •Глава 14
- •Процесс мышления
- •Определение интеллекта
- •316 Проблемы оценки интеллекта
- •Психофизиологические корреляты мыслительного процесса
- •Анализ нейронной активности в процессе мышления
- •Ээг и томографические исследования мыслительной деятельности
- •Связанные с событием потенциалы
- •Факторы, определяющие развитие интеллекта
- •Креативность
- •Глава 15 Психофизиология памяти и научения
- •Энграмма и способы ее формирования
- •332 Нейронные механизмы рабочей (оперативной) памяти
- •Поиск структур, ответственных за долговременное хранение информации
- •Особенности формирования эксплицитной памяти
- •341 Психофизиологические механизмы имплицитной памяти
- •Классический условный рефлекс
- •Оперантное обусловливание
- •Влияние эмоциональной значимости информации на память
- •Глава 16 Речь
- •Эволюционный смысл появления речевого общения
- •Функциональная асимметрия и речь
- •Процесс произнесения слов
- •Значение слова с точки зрения психофизиологии
- •Роль лимбических структур в порождении речи
- •Глава 17
- •П. Рубенс. Адам и Ева
- •Психофизиология пола
- •Биологический смысл половых различий
- •Закономерности половой дифференцировки в онтогенезе
- •Механизмы детерминации пола в пренатальный период
- •385 Половая дифференцировка мозга
- •Половая дифференцировка после рождения
- •Репродуктивный цикл
- •Нервный контроль сексуального поведения
- •Особенности сексуального поведения животных
- •Особенности сексуального поведения человека
- •Феромоны и их влияние на сексуальное поведение
- •Воздействие половых гормонов у человека
- •Психофизиологические причины измененного сексуального поведения
- •Половые различия познавательных процессов
- •Половые различия в приспособлении к среде
- •Глава 18 Психофизиологические механизмы старения
- •Спутники старости
- •Возрастные изменения мозговой ткани
- •Возрастные изменения ненейрональной мозговой ткани
- •Старение днк
- •Когнитивные функции в возрасте инволюции
- •Болезнь Альцгеймера
- •418 Механизмы замедления старения
- •Глава 19 Психофизиологические механизмы аддиктивного поведения
- •Роль дофаминергических структур в механизме подкрепления
- •Функционирование системы подкрепления
- •Участие дофамина в пластических перестройках при инструментальном обусловливании
- •Наркотическая аддикция
- •Наркотики и дофаминергическая система
- •Алкогольная аддикция
- •Сексуальная аддикция
- •Любовная аддикция
- •Алиментарная аддикция
- •Зависимость от работы (работоголия)
- •Зависимость от игры (гэмблинг)
- •Кибераддикция
- •1Игростриарная система дофаминергических волокон
- •Глава 20 Паранатальная психофизиология
- •Особенности развития человека в раннем онтогенезе
- •Психофизиологические изменения во время беременности
- •Нервная
- •Пластинка
- •Слуховая плэкода.
- •Зачаток сердца
- •Влияние состояния матери на плод
- •Пренатальное развитие цнс
- •Перинатальный период
- •“Si-Психофизиологическая готовность к материнству
- •Морфофункциональные изменения в цнс в постнатальный период
- •473 Критические периоды постнатального развития
- •Физиологические обоснования наличия критических периодов
Сенсорные системы
Мозг получает информацию исключительно через посредство органов чувств, и, воспринимая события окружающего мира, человек реагирует только на узкий диапазон воздействий. Органы чувств являются неким ситом, которое ограничивает поток доступной информации уже на входе. Это связано с тем, что наше представление о мире заключено в рамки, определяемые диапазоном энергии, на которую настроены рецепторы. Человек может ощущать лишь те виды энергии, которые органы чувств способны обнаружить и превратить в нервные импульсы. Этот диапазон, по-видимому, сформировался в процессе эволюции и ограничен восприятиями, без которых выживание конкретного вида становится сомнительным.
Рецепторы представляют собой преобразователи, превращающие один вид энергии в другой. Каждый тип рецепторов воспринимает определенную энергию, к которой он максимально приспособлен, и затем превращает ее
120
121

в электрическую энергию нервного импульса. Например, глаза реагируют на электромагнитное излучение в крайне узкой части его спектра — от 350 до 750 нм (нанометр — 1/10 000 000 м) (рис. 5.4). Это малая толика всего диапазона электромагнитных волн, но она обусловливает ощущение всего видимого человеком света, используемого растениями при фотосинтезе. Только у отдельных видов животных рецепторы выходят за пределы этого диапазона. Некоторые змеи, охотящиеся ночью, воспринимают инфракрасное
122

Рис. 5.5. Спектр солнечного света у земной поверхности имеет меньшую ширину из-за поглощения в атмосфере; диапазон длин волн лежит между 320 и 11000 нм; этот диапазон эффективен для фотобиологических процессов. Спектр солнечного света, достигающий обитателей моря, имеет еще меньшую ширину из-за поглощения морской водой. Сплошная линия указывает длины волн максимальной интенсивности; пунктирные линии обозначают границы длин волн, в которых сконцентрировано 90% солнечной энергии на каждом уровне в атмосфере и океане. Буквы над спектром длин волн обозначают ультрафиолетовые (УФ), фиолетовые (Ф), синие (С), зеленые (3), желтые (Ж), оранжевые (О), красные (К) и инфракрасные (ИК) лучи (Хелд, Ричарде, 1972).
123

То, что человек и животные воспринимают именно этот тип электромагнитного излучения, не является случайным. При прохождении через атмосферу земли диапазон электромагнитной энергии солнца вследствие поглощения ее воздухом сужается и лежит между 320 и 11000 нм; именно он и оказывает физиологическое воздействие (рис. 5.5).
Подобные ограничения существуют и в других органах чувств. Так, оптимальный диапазон частот воспринимаемых человеком звуковых волн определяется особенностями источника звука (голосовых связок), приемника звука (уха), спектром шумов (посторонними источниками звуков, маскирующих сигнал), желаемой разрешающей способностью и дальностью связи.
Для передачи большого количества информации, тесно связанного с разрешающей способностью передающего канала, лучше подходят высокие частоты. Летучая мышь, например, использует ультразвуковое излучение в диапазоне 20-100 кГц. В случаях, когда особая важность придается не качеству, а дальности передачи информации, более приемлемы низкие частоты, поскольку затухание звуковых волн усиливается примерно пропорционально квадрату их частоты. Факторами, устанавливающими нижнюю границу чз -стоты воспринимаемых звуковых волн, являются звуки, возникающие при движении мышц тела человека. Заткнув уши, каждый может услышать звуки, издаваемые мышцами в процессе еды или произнесения слов. Эти низкочастотные шумы близки к пороговым значениям слуха в диапазоне низких частот. Следовательно, слух человека невосприимчив ровно настолько, чтобы не слышать звуки своего тела (Бекеши, 1974).
Оптимальным для человеческого восприятия являются частоты от 200 до 4000 Гц. В этом диапазоне уши и голосовые связки человека максимально приспособлены для речевого общения, причем полоса частот достаточно широка, чтобы их модуляцию можно было использовать в качестве носителя информации.
Механорецепторы (реагирующие на механическое воздействие), по-видимому, возникли в процессе эволюции одними из первых. Они позволяли примитивным морским животным сохранять ориентацию по отношению к силе тяжести, обнаруживать препятствия и ощущать вибрацию, вызванную другими животными. Приспособление к жизни на суше привело к развитию механорецепторов, чувствительных к колебаниям воздуха. Формирование специализированных органов и появление потребности в быстрых регуля-торных механизмах привело к возникновению рецепторов, чувствительных к внутренним механическим раздражениям. Механорецепторы у человека есть во всех органах, где происходят пассивные или активные движения, например, в пищеварительном тракте, легких, сердце, кровеносных сосудах, коже и скелетной мускулатуре. Эти рецепторы передают в нервную систему информацию сдвижении, напряжении, давлении (Левенстайн, 1974).
Наиболее примитивные органы чувств человека — обоняние и вкус, поскольку обучение на их основе протекает труд нее всего. Если для слуха и зрения внешнее воздействие на рецептор можно охарактеризовать с помощью определен-
124
ной физической шкалы (длина электромагнитных волн), то относительно запаха и вкуса это пока невозможно осуществить. Субъективно человек различает четыре вкуса — сладкий, соленый, горький, кислый и около семи основных запахов — камфарный, мускусный, цветочный, мятный, эфирный, едкий и гнилостный. Однако не обнаружено единого свойства, которое можно было бы положить в основу классификации веществ, вызывающих ощущения вкуса и запаха.
В 1949 г. Р. Монкрифф (Эймур и др., 1974) сформулировал предположение о том, что молекулы пахучих веществ воздействуют на рецептор благодаря точному совпадению с формой воспринимающего участка. Таким образом, форма и величина молекулы являются ее свойствами, предопределяющими ощущения.
Для человека химическая информация не является ведущей, в отличие от некоторых животных. У большинства насекомых химический способ взаимодействия имеет преимущество перед другими, и феромоны (химические вещества, с помощью которых передаются сигналы) воспринимаются ими даже на расстоянии километров (рис. 5.6).
Рис. 5.6. Мирмикофильные гусеницы эксплуатируют социальное и симбиотическое поведение муравьев в собственных интересах. Специализированные “муравьиные” органы гусениц способствуют симбиозу с муравьями, либо имитируя их коммуникационные сигналы, либо выделяя, подобно симбиотическим растениям, съедобные жидкости (Врис, 1992).
Человек не ощущает отсутствия каких-то видов восприятия (кроме тех, утрата которых препятствует эффективной адаптации), если не имел их от рождения, пока какие-то обстоятельства не укажут ему на это. Люди не страдают от цветовой слепоты, глухоты на некоторые тоны и отсутствия вкусовой чувствительности, пока не узнают от других об этом дефекте. То, что человек не воспринимает, не является объектом его желания (Хелд, Ричарде, 1974).
Рецепторы только воспринимают информацию с той или иной степенью точности, ограниченной разрешающей способностью сенсорного датчика. Далее эта информация передается в центральную нервную систему для обработки. Вместе взятые, рецепторы, воспринимающие информацию, не-
125
рвные пути, передающие ее в мозг, и области мозга, обрабатывающие и анализирующие эту информацию, составляют анализатор. Восприятие требует целостности всех частей анализатора. Задачей анализатора является не только принять поступивший на рецептор сигнал, но и соединить отдельные ощущения в образ, уже известный или никогда доныне не воспринимаемый человеком. В течение своей жизни человек накапливает эти образы, что позволяет все более быстро решать задачу по идентификации того или иного объекта (Соколов, 2000).
Информация, прошедшая процесс переработки и анализа, далее либо осознается, либо остается на неосознанном уровне, но, тем не менее, может в той или иной степени влиять на поведение человека.
Одной из нерешенных проблем в современной психофизиологии является кодирование информации, получаемой рецепторами, и ее интерпретация в головном мозге.
Предполагается, что сенсорная информация может кодироваться частотой ПД. Все рецепторы преобразуют свойственный им тип энергии в энергию электрического импульса. Он генерируется нейронами однотипно — по принципу “все или ничего”. Нервы, идущие от рецепторов, также не обладают специфичностью. Специфичность свойственна областям коры, в которые, в конечном счете, и поступает информация. Предполагается, что кодирование сигналов возможно частотой разрядов нейронов, плотностью импульсного потока, особенностью организации импульсов в группе (пачке), интервалами между отдельными импульсами, периодичностью пачек, их длительностью, числом импульсов в пачке.
В коре головного мозга, в свою очередь, находятся высокоспециализированные клетки — детекторы, избирательно реагирующие не просто на возбуждение в точке, а на отдельное свойство стимула — контраст, движение, кривизну линии. Д. Хьюбел и Т. Визел обнаружили в зрительной коре кошки самые разнообразные детекторы, анализирующие любые наклоны линий. Позднее аналогичные детекторы были обнаружены во всех других анализаторах. Эти нейроны организованы в иерархические структуры в соответствии со сложностью анализа, который они производят. Ю.М.Конорски (1970) ввел понятие “гностическая единица” для нейрона, селективно настроенного не на элементарный признак, а на сложную конфигурацию признаков. Он предсказал возможность существования таких нейронов, а позднее они были найдены в нижневисочной коре и избирательно реагировали на такие сложные стимулы, как лицо человека. По-видимому, элементарные детекторы выявляют отдельные признаки. Затем следует синтез таких элементарных детекторов в сложную комбинацию, и эта информация вновь анализируется, но уже на более высоком уровне во всех анализаторах. Выделение отдельных частотных составляющих нейронами-детекторами сменяется их синтезом, за которым следует анализ на уровне нейронов-гностических единиц, выделяющих отдельные образы (зрительные, слуховые, тактильные и т.д.). Окончательный образ складывается, по-видимому, не на основе активности одной клетки, располагающейся на самой вершине такой иерархической структуры, а благодаря функционированию групп нейронов — нейронных ансамблей.
